
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 1

MoMIT : Porting a JavaScript Interpreter
on a Quarter Coin

Rodrigo Morales, Member, IEEE,
Rubén Saborido, Member, IEEE,

and Yann-Gaël Guéhéneuc, Senior Member, IEEE

Abstract—The Internet of Things (IoT) is a network of physical, connected devices providing services through private networks and
the Internet. The devices connect through the Internet to Web servers and other devices. One of the popular programming languages
for communicating Web pages and Web apps is JavaScript (JS). Hence, the devices would benefit from JS apps. However, porting JS
apps to the many IoT devices, e.g., System-on-a-Chip (SoCs) devices (e.g., Arduino Uno), is challenging because of their limited
memory, storage, and CPU capabilities. Also, some devices may lack hardware/software capabilities for running JS apps “as is”. Thus,
we propose MoMIT , a multiobjective optimization approach to miniaturize JS apps to run on IoT devices. We implement MoMIT using
three different search algorithms. We miniaturize a JS interpreter and measure the characteristics of 23 apps before/after applying
MoMIT . We find reductions of code size, memory usage, and CPU time of 31%, 56%, and 36%, respectively (medians). We show that
MoMIT allows apps to run on up to two additional devices in comparison to the original JS interpreter.

Index Terms—Internet of Things, Software Miniaturization, Multiobjective optimization, embedded devices, JavaScript, Evolutionary
algorithms

F

1 INTRODUCTION

THE INTERNET OF THINGS (IoT) is a network of physical,
connected devices providing services [1] through pri-

vate networks and the Internet. In 2016, Gartner1 predicted
that 75% of Internet of Things (IoT) projects will take up
to twice as long as planned in 2018 due to insufficient
staffing/expertise. Meanwhile, more companies want to
seize the business opportunities offered by the IoT. They
must propose Web services and Web apps on different
architectures to reach as much customers as possible. Thus,
they must spend time and effort developing/migrating and
maintaining their apps on different devices. However, they
face the large diversity of hardware and software, from
Cloud virtual machines to Systems-on-a-Chip (SoCs), and
need help to map/remove features from their apps, to
deploy them on constrained devices.

Today’s programming language for Web pages and Web
apps is JavaScript (JS). JS is among the most popular pro-
gramming languages in the last five years [2]. It is com-
monly used to develop event-driven IoT systems. It can
handle large networks of devices and perform asynchronous
computations, i.e., a typical scenario with apps. It powers
many IoT projects, including some of IBM and Samsung.
Using the same JS app on many devices would help these
companies deploy on their diverse hardware and software.
However, there is a shortage of JS developers with IoT ex-
perience [3], [4] and memory, storage, and CPU constraints
prevent the direct use of JS.

• R. Morales, R. Saborido, Y.-G. Guéhéneuc are with Concor-
dia University Montréal, Québec, Canada. E-mail: rodrigo-
morales2@acm.org, ruben.saborido-infantes@concordia.ca, yann-
gael.gueheneuc@concordia.ca.

Manuscript received March 2019.
1. http://tiny.cc/v36fdz

Objective: We want an approach to miniaturize JS inter-
preters to run Web apps on diverse hardware, including,
constrained devices, by removing from the interpreters the
code features unneeded to run the apps. Table 1 shows ex-
amples of such features. Section 5 describes the experiments
that we run to find these most impactful features.

Context: A company developed some apps in JS on regu-
lar hardware. It now wants to run it on constrained devices.
It could either translate its app into C or compile/bundle
a JS interpreter with the app. The first scenario implies the
cost of maintaining two apps in C and JS in parallel while
the second only requires removing unnecessary features
from the interpreter. We choose the second scenario.

Method: We formulate the problem of miniaturizing an
interpreter as a multiobjective optimization problem con-
sidering three objectives: memory, storage, and CPU. Given
a JS interpreter, we propose MoMIT, an approach taking
as input (1) a set of available code features F ; (2) a list
L of compulsory features ComF ⊂ F ; and, (3) a list of
IoT devices specifications. MoMIT finds the combinations
of optional and compulsory features that best satisfy the
devices’ constraints for each objective.

Results: We design and implement MoMIT as a multi-
objective miniaturization approach that combines the con-
figuration options of a JS interpreter to run an unmodified
JS app. We apply MoMIT on the Duktape JS interpreter.
We identify 86 features among 283 that companies can
(de)activate to miniaturize Duktape and run their apps on
constrained devices. We reveal 10 hidden dependencies
within 20 of the 86 features of Duktape that prevented minia-
turization. We detect and report a bug in Duktape preventing
developer to customize their interpreter. (The bug was fixed
and the corresponding patch committed to the repository’s

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 2

master branch (issue #19902). We conduct a comprehensive
empirical study on 23 JS tests of a benchmark for Web
browsers and show that MoMIT allows running them on
many devices, up to the size of a quarter coin. We compare
three different algorithms, i.e., NSGA-II, RS+, and SWAY in
terms of execution time and quality of their solutions to
show that MoMIT is independent of the search algorithm.
We release MoMIT as open source along with the outcome
data result of our experiments for the IoT community.

Although we focus on miniaturizing the Duktape JS
interpreter to constrained devices, MoMIT is general and
supports other code interpreters, e.g., Lua, Python, etc.

The Remainder of this paper is organized as dollows. Section 2
relates our work to the state of the art. Section 3 provides
foundations on multiobjective optimization, evolutionary
algorithms, IoT systems, JS, and software miniaturization.
Section 4, presents our automated multiobjective approach
for miniaturizing JS engines, MoMIT. Section 5 reports a
preliminary study of the impact of JS features on perfor-
mance metrics. Section 6 describes the implementation of
MoMIT with different evolutionary algorithms. Section 7
summarizes the experimental setting for evaluating MoMIT.
Section 8 provides the results of our experiments while
Section 9 discusses them and Section 10 threats to their
validity. Section 11 concludes with future work.

2 RELATED WORK

We present related work divided in four categories. To
the best of our knowledge, we are the first to address
the problem of miniaturizing interpreters for IoT using a
multiobjective approach.

2.1 Programming Language Migration
Software migration is developers porting source code writ-
ten in one programming language into another. It is tedious
and error-prone and requires developers to define manually
migration rules between the origin and target language
constructs, including between (non-)equivalent APIs inter-
faces of third-party libraries. (Semi-)automatic tools were
proposed to ease migration, e.g., Mossienko et al. [5] pro-
posed an approach to migrate COBOL to C and Sharpen 3

allows developers to migrate Java to C#. Other tools were
developed for migrating Web sites to modern APIs [6], [7].
These tools require developers to define migration rules to
customize and perfect their conversion. There is no tool
support available for migrating JS to C, which is the main
programming language for IoT devices.

2.2 Software Product Lines
A software-product line (SPL) defines a set of software
sharing code among them [8]. From one software-product
line, several software can be generated. Siegmund et al. [9]
modelled the compilation configuration options of database
systems as a product line. By turning on/off these options,
different databases could be generated. However, the more
options, the more difficult is the search for valid combina-
tions of these options. Turning on or off features randomly

2. https://github.com/svaarala/duktape/issues/1990
3. https://github.com/mono/sharpen

has a low probability of satisfying the constraints of a valid
software. We corroborate this difficulty when implementing
a pure random search to test MoMIT, which returns no valid
software among 250 candidates, due to dependency among
features discussed in Section 8. Recent works, e.g., Sayyad et
al. [10] and Chen et al. [11] combined metaheuristics with a
preprocessor (a SAT solver) to reduce the search-space to a
subset of valid candidates instead of randomly generating
and evaluating candidates.

2.3 Compilers Optimization

Compiler options is an effective way to increase the quality
of executable code. Modern compilers can compile for many
hardware/software and implement many optimizations,
which are not always appropriate for a given target. Hos-
sein et al. [12] evaluated different autotuning approaches
to choose compiler options and the ordering of their opti-
mizations. They demonstrated that these approaches have
positive effects on the performance of apps, with up to 60%
improvements. Souza and Silva [13] presented a design-
space exploration approach to search for a compiler op-
timization sequence. Their approach relies on sequences
previously generated for a set of training apps. They showed
that optimized sequences generated code outperforming the
standard optimization level O3 by an average improvement
of 7% on two benchmark suites. Plotnikov et al. [14] pre-
sented a tool for automatic compiler tuning to improve the
performance of several popular apps, including GCC itself.
Luque et al. [15] used parallel metaheuristic techniques to
choose compiler options when compiling a set of apps and
to improve their runtime performances. Georgiou et al. [16]
observed that fewer optimizations can yield significant sav-
ings in runtime performance and energy consumption.

2.4 Software Miniaturization

Software Miniaturization was introduced by Di Penta et
al. [17] to reduce the footprint of software during its porting
to hand-held devices. Their approach helps removing dead
code, refactoring code clones, and eliminating circular de-
pendencies. They evaluated their approach on a geographic
information-system and reduced the average number of
objects by 50%. Ali et al. [18] proposed a multiobjective
approach to miniaturize apps based on customers’ prereq-
uisites, storage occupation, and CPU usage. They applied
their approach on an email client and an instant messenger
and showed a reduction of the manual effort by 77% on
average. We choose a different approach miniaturizing the
interpreter that executes an apps, not the app itself. We do
not modify the app. Both approaches could be applied on
the same app to reduce its footprint even more.

3 BACKGROUND

This section provides a background on multiobjective opti-
mization and the IoT to understand our approach.

3.1 Multiobjective Optimization

The general formulation of a multiobjective optimization prob-
lem is given by:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 3

Table 1: JS interpreter most-impactful features for miniaturization to IoT devices

ID Name Description Value Code
Size δ

Mem.
Usa. δ

CPU
Time δ

3 DUK USE EXEC PREFER SIZE Prefer size over performance in bytecode executor TRUE -11.71 0 9.15
7–10 Divers (Store objects in ROM) built-ins for compiling objects and strings as constants in the ROM space to reduce

RAM usage at the cost of a larger code footprint and slower performance
TRUE 25.21 -87.93 -13.41

86 DUK USE REGEXP CANON
WORKAROUND

Use a 128kB lookup table for improving RegExp processing performance at the cost
of code size

FALSE 23.59 0 -14.63

5 DUK USE LIGHTFUNC BUILTINS Force built-in functions to be lightweight functions. This reduces memory footprint
by around 14 kB at the cost of some non-compliant behavior.

TRUE 0 -37.43 -12.805

43 DUK USE BUFFEROBJECT SUPPORT Enable support for Khronos/ES 6 typed arrays and Node.js Buffer objects. This
includes all ArrayBuffer, typed array, and Node.js Buffer methods.

FALSE -4.18 -21.39 -14.02

19 DUK USE DATE BUILTIN Provide a Date built-in FALSE -0.11 -11.13 -13.41
11 DUK USE REFERENCE COUNTING Use Automatic Reference Counting for Memory management to remove objects

that are no longer needed
FALSE -6.79 10.62 -12.2

84 DUK USE FASTINT Enable support for 48-bit signed ”fastint” integer values. Fastints are transparent
to user code (both C and Ecmascript) but may be faster than IEEE doubles on
some platforms. The downside of fastints is increased code footprint and a small
performance penalty for some kinds of code.

TRUE 6.67 0 -23.17

15 DUK USE ARRAY BUILTIN Provide an Array built-in. FALSE -1.7 -4.85 -15.85
6 DUK USE PREFER SIZE Catch-all flag which can be used to choose between variant algorithms where a

speed-size tradeoff exists (e.g. lookup tables).
TRUE -0.76 -0.03 94.51

minimize {f1(x), f2(x), . . . , fm(x)}
subject to x ∈ S, (1)

wherem (m ≥ 2) and the objective functions fi : Rn → R (i =
1, . . . ,m) must be minimized and S ⊂ Rn is the feasible set.
A decision vector x = (x1, . . . , xn)

T is a feasible solution if it
belongs to S. Its image z = f(x) = (f1(x), . . . , fm(x))T is
an objective vector and the set of all objective vectors, denoted
as Z = f(S) ⊂ Rm, is the feasible objective set.

Conflicts among objectives make it impossible to find a
feasible solution that simultaneously minimizes all objec-
tives. Given z, z′ ∈ Rm, we say that z dominates z′ if zi ≤ z′i
for all i = 1, . . . ,m and zj < z′j for, at least, one index j.
When z and z′ do not dominate each other, we say that they
are non-dominating. For problem (1), a Pareto optimal solution
is a feasible solution x ∈ S for which there does not exist
another x′ ∈ S such that f(x′) dominates f(x). The set of
all Pareto optimal solutions, E, in the decision space, is the
Pareto optimal set and its image in the objective space, f(E),
is the Pareto optimal front (PF).

3.2 Multiobjective Evolutionary Algorithms
Evolutionary multiobjective Optimization (EMO) algorithms
can solve multiobjective optimization problems [19], [20],
[21], [22], [23], [24]. They find a subset of non-dominated
solutions approximating PF . The approximation set is com-
posed of solutions as evenly distributed as possible in PF
(diversity) and as close as possible to the true PF (con-
vergence). In particular, NSGA-II [25] is an EMO algorithm
that has solved many real-life multiobjective optimization
problems [20], [26]. It uses an elite-preserving strategy and
a diversity preserving mechanism and uses a fast non-
dominated sorting procedure to rank the solutions into
several non-dominated fronts to select the best individuals.

3.3 Breadth and Depth of the IoT
The IoT involves a range of key topic [27], including:
hardware, networking, software design, software develop-
ment, security, business intelligence, data analytics, machine
learning, and artificial intelligence. We focus specifically on
hardware and software development.

Hardware: An IoT device is any piece of hardware de-
signed/adapted to perform a particular task. In this work,
we consider off-the-shell boards, which we divide in two
categories: single-board computers (SBCs) and systems-on-
chips (SoCs). Generally, IoT devices are characterized by
their dimensions, processing power, memory, storage ca-
pabilities, and connectivity. Table 2 presents three of the
most popular SoCs (Rows 1–3) and two SBCs (rows 4–5).
It is not exhaustive but a selection of the most relevant
IoT devices available at the time of writing according to
IBM [28]. Column “Cloud enabled” indicates if the device
includes pre-integrated cloud platform to manage a set of
IoT devices, only available for Particle devices. We did not
include Arduino devices because they target hobbyists rather
than industrial systems, e.g., the Arduino UNO offers only 2
KB of memory and 32 KB of storage, does not include Wi-Fi,
and cost more than both Photon and ESP32.

Software: Developers usually use cross-platform IDEs
to mitigate the burden of developing/using device-specific
libraries for each different targeted device. They use the
MQTT protocol or Web sockets to connect devices to edge
nodes/Cloud servers and perform data analytics on the data
collected by the devices. They usually develop the front-
ends of their apps using JS and, thus, would benefit of
using JS also on the devices to reduce the complexity and
challenges of managing a multi-language app. However,
the standard programming language for developing apps
for IoT devices is C/C++. JavaScript and Python are also
possible through Tessel, Particle.io, MicroPython, or WeIO but
developers then must adapt manually their apps to the
constraints of each device (memory, storage, and CPU).

3.4 JS Engines for IoT Devices

Moreover, because JS is a high-level interpreted program-
ming language, developers often cannot deploy a full JS
interpreter on their IoT devices because of their limited
resources. One solution is to use a device that can run
JS code natively, e.g., Espruino, although it is expansive
and uncommon in industrial settings. Alternatively, JS en-
gines exist that can produce lightweight JS interpreters to
be deployed in highly-constrained devices: Duktape [29],

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 4

Table 2: Comparison of the IoT devices used in this work

Name Processor Memory (KB) Storage (KB) Wi-Fi Dimensions (mm) Weight (g) Cloud enabled Price (US)
Photon STM32 ARM Cortex M3 128 1,000 yes 36.58 x 20.32 x 4.32 5 yes 19.00
ESP32 XTENSA DUAL-CORE-32-BIT 512 4,000 yes 55.3 x 28.0 x 12.3 9.6 no 19.95
JN5168 JN5168 32 bit RISC microprocessor 32 256 no 24.5 x 30.5 x 9.77 4 no 26.95
RPI 3 Model B+ ARM Cortex-A53 CPU 1,000,000 16,000,000 yes 85 x 56 x 1.6 42 no 54.40
BeagleBone Black AM3358 ARM Cortex-A8 256,000 4,000,000 yes 86.40 x 53.3 39.68 no 89.00

tinyJS4, or JerryScript5). These engines allow developers to
enable/disable the code features and interpreter parameters
to execute their apps on constrained devices. However,
developers must explore manually the space of all possible
combinations of features, parameters, and constraints.

4 APPROACH

We introduce MoMIT (Multiobjective Software Miniaturiza-
tion for the Internet of Things) to help developers port a
JS interpreter to some IoT devices. We describe MoMIT as
if applied by a company without any assumption on the
available tool support, described in Section 6.

4.1 Pre-requirement Elicitation

Pre-requirement elicitation identifies the set of pre-
requirements (PRs), including customers’ expectations, re-
quired features, etc. PRs can be identified by developers or
using static code-analysis tools, e.g., JSAnalyse6.

4.2 Selection of IoT Device Candidates

Developers must decide the IoT devices on which to deploy
their apps. They must provide devices specifications, e.g.,
available memory, and order the devices by preference for
MoMIT to prioritize them.

4.3 Feature Identification

Let F be the set of all features provided by a JS interpreter.
Basic features of the interpreter, e.g., primitive types, cannot
be disabled and are excluded from F . Let ComF ⊂ F be
the compulsory features required by the company that the
interpreter must provide. These are features necessary for
the correct execution of the app and compliance with JS
standards, e.g., ECMAScript (ES).

Let DepF be the dependencies among features: fi ∈ F is
dependent on fj ∈ F with i 6= j, if fi requires fj to have a
value v ∈ {false, true} to produce a valid JS interpreter.
A valid interpreter is a customized interpreter that was
successfully build and run and that provides ComF plus
a subset of F while satisfying DepF .

Developers must map PRs with the features F of the
interpreter and give to MoMIT F , ComF , and DepF .

4. http://tinyjs.net
5. http://jerryscript.net
6. https://archive.codeplex.com/?p=jsanalyse

4.4 Selection of Feature Combinations
MoMIT identifies the set of features satisfying the con-
straints imposed by the IoT devices specifications. It starts
with the compulsory features ComF and finds sets of op-
tional features OF ≡ {g1, . . . , gN} through multiobjective
optimization, with N the number of optional features and
gi ∈ F with i = {1, . . . , N}. A miniaturized interpreter can
implement the optional features F ′ ⊂ OF . There exist 2OF

possible sets F ′.
MoMIT considers that an interpreter divides into M

implementation units IU ≡ {iu1, iu2 . . . , iuM}. Function
Impl takes as input a set of features and returns the corre-
sponding implementation units. A miniaturized interpreter
is IU ′ = Impl(F ′ ∪ ComF).

Including/excluding a feature requires dealing with a
set of property values P ⊂ RK , with K the number
of property values, and with a set of internal constraints
IC ≡ {ic1, ic2, . . . , icK}, each of them imposing a set icj
of acceptable values on the corresponding property val-
ues, with P ∈ IC ≡ {pj ∈ icj∀j = 1, . . . ,K}. Function
Propj(IU

′) returns the property value of an interpreter
with respect to constraint j with j ∈ IC .

For the sake of simplicity, we focus on memory usage,
storage usage, and CPU time, although other constraints
could be considered, e.g., network connectivity, energy con-
sumption, form factor, etc. We represent the set of potential
IoT devices to port an interpreter as L ≡ {l1, l2 . . . , ll}.

To measure the extent to which a miniaturized inter-
preter IU ′ matches the constraints of a device l, we define
the device-satisfaction rate of l in Equation 2:

DSRl(IU
′) =

∑K
j=1

Propj(IU
′)−icj(l)

icj(l)

K
(2)

A company would rank each device i according to
some criteria, e.g., its customers’ preferences: vali, where
1 ≤ vali ≤ Vmax and V al ≡ {val1, val2, . . . , valL}. We then
define a satisfaction measure, the customer’s satisfaction
rate (CSR) in Equation 3, expressing the extent to which a
miniaturized interpreter matches these preferences.

CSR(IU ′) =

∑L
i=1DSRi(IU

′)× vali
Vmax

L
(3)

Equation 4 shows the equation describing the miniatur-
ization problem, which MoMIT solves using some search
algorithm to obtain optimal combinations of features, which
are miniaturized interpreters that (1) maximize customer’s
preferences CSR, i.e., minimize −CSR, and (2) satisfy the
constraints IC by minimizing Prop(IU ′) ∈ IC. MoMIT is
independent of the search technique. Any search algorithm
could be use to find the best combination of features.

min
F ′∈2OF

(−CSR(IU ′), P rop(IU ′)) (4)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 5

We formulate the problem of miniaturization as a mul-
tiobjective problem and, thus, MoMIT is likely to find more
than one solution. A solution F ′ is a set of features in
F to build an interpreter able to execute the apps of the
company. Developers can use other criteria to select one
single solution, e.g., the solution that can be deployed in
most devices or the solution that executes faster.

4.5 Third-party Libraries
Developers often use third-party libraries to simplify their
implementations and benefit from others’ works. MoMIT
handles third-party libraries because in its first step, during
pre-requirement elicitation, third-party libraries are identi-
fied either by developers or through a static analysis and
because, in its implementation, MoMIT recursively parses
the source code of all JS files, including those of third-party
libraries, so the JS interpreter can execute method calls from
the JS app to their functions.

5 PRELIMINARY STUDY

We now justify our approach through a preliminary study
of the impact of a JS interpreter features on software perfor-
mance metrics with the following research questions:
(PQ1) Does the selected JS-interpreter features have an
impact on software performance metrics? We want to
confirm an impact of each of the selected JS interpreter
features and test the following null hypothesis: H01 : there is
no difference between the performance of the JS interpreter before
and after modifying the default value of a selected feature.
(PQ2) From the selected JS-interpreter features, which
ones have the bigger impact on software performance
metrics? We want to assess the relative impact of each
feature in PQ1 on the performance of an app and test
the following null hypothesis: H02 : there is no JS interpreter
feature that has a major impact on performance metrics.

We distinguish two categories of features: (1) ES
compliant-features and (2) JS interpreter-specific features.
The first category includes all ES features from version 5
to 9 as currently supported by most JS interpreters while
the second is interpreter-dependent. We choose Duktape for
its portability, compact footprint, and customization APIs,
which makes it ideal for highly-constrained devices.

We consider all ES compliant-features and explore the
documentation of Duktape to identify features related to
performance. We identify 284 features; 40 of which pertain
to ES compliance. Some features are binary (activated or
not) while others have interval and ratio scales to tune
certain features, e.g., the size of the debug-code static buffer.
Exploring each feature with all their possible values is unfeasible.
Developers must use MoMIT.

We analyze Duktape configuration profiles to determine
adequate starting values for features with interval and ra-
tio scales to bootstrap MoMIT. These profiles provide de-
fault values for different needs: low-memory, performance-
sensitive, timing-sensitive, etc. From the documentation and
the profiles, we filter out features using the following crite-
ria: deprecated features; features enabling extra debugging
features; features under development and experimental fea-
tures. Thus, out of 244 Duktape features, we consider 46
related to performance.

We develop a framework to execute a JS app and
measure its performance (interpreter plus app) after
(de)activating each of the 86 features one by one to study
their impact on performance. We write this framework
in Python, leveraging Duktape Python configuration script,
which produces C source code and headers to compile the
interpreter plus app as one C program. A first script p1
benchmarks the JS app using the default Duktape features.
The second script p2 benchmarks the app after changing
the default value of each of the 86 features individually
for a value suggested either in some configuration profiles
or in Duktape documentation to achieve a goal, e.g., reduce
code size. The third script p3 benchmarks the app using the
features and values read from a configuration file. The list
of features and their values and all the scripts used in this
study are in the replication package [30]. We compute the
size of the compiled interpreter using the Linux command
stat, which reports the total file size, in bytes. We use
the Linux mallinfo command to measure memory usage and
/usr/bin/time to measure CPU time and report the total
number of seconds that the process spent in user mode.
Code size does not change between runs so we measure it
only once. However, CPU time and memory usage may vary
between runs due to CPU and operating system schedulers.
Thus, we perform 10 runs to control for random errors.

The output of the scripts is a CSV file with the percentage
change (δ) of each property value (p ∈ P), defined in
Equation (5):

δ(p) =
median(p(mJSI))−median(p(JSI))

median(p(JSI))
(5)

where JSI is the JS interpreter generated using default
features andmJSI the miniaturized JS interpreter. Negative
values indicates an improvement in p value, and positive
values a detriment. We computed the median on the chosen
number of runs.

We use a JS app that counts the number of prime
numbers (primeSimple) below 100, 000. It is a minimal
version that does not make use of strings, arrays, objects, or
any libraries, but primitive types and standard arithmetic
operators to be compatible with all features. The app code
is in the replication package [30]. We selected a most simple
app to measure the impact of each individual feature on
the performance metrics, without having to handle conflicts
among features: we could not measure the impact of deac-
tivating arrays if we test an app that uses arrays. Without
loss of generality, we perform the measurements in a RPI 3
Model B+ with a 1.4GHz 64-bit quad-core ARM Cortex-A53
CPU, using Duktape 2.3.0 and gcc 6.3.0.

5.1 Data Analysis

Next we describe the dependent and independent variables
of this preliminary study, and the statistical procedures used
to address each research question.

(PQ1): Does the selected JS-interpreter features have
an impact on software performance metrics? For PQ1,
the dependent variables are the measured performance met-
rics for each JSI feature. The independent variable is the
use of default/test values on each JSI features, which

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 6

can be dichotomy or continues values based on Duk-
tape configuration files. In total we found 75 dichoto-
mous variables and 11 continuous variables. For continu-
ous variables, we tested two values in our experiments:
the default value provided by Duktape JS engine and
the value suggested for constrained environments (a.k.a.,
configuration profiles). For example, for the size of Duk-
tape heap string table, DUK USE STRTAB MINSIZE (see
https://wiki.duktape.org/configoptions), we considered its
default value (1,024 bytes) and the value in the low-memory
configuration profile (128 bytes).

(PQ2): From the selected JS-interpreter features, which
ones have the bigger impact on software performance met-
rics? For PQ2, we analyzed the features corresponding to
the outliers obtained in PQ1. The dependent and independent
variables are the same than in PQ1.

5.2 Results and Discussion of the Preliminary Study

Figure 1 shows the distribution of percentage changes in
performance metrics for the 86 features, calculated using
Equation (5). The numbers of features changing the percent-
age are, for code size, 52, memory usage, 35, and CPU time,
82. About 40% of the features impact one of the performance
metrics. No feature has a percentage change equal to zero
for the three performance metrics and we reject H01 .

●●

●
●
●

●

●

●●●
●
●●●●
●

●

●

●

●

●

●●

●

●

●

●●●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

Code size Memory usage CPU time

−
50

0
50

10
0

Figure 1: Percent changes for the 86 features.

Figure 2 shows the same distribution of percentage
changes in the performance metrics without the outlier
values. The medians of the percentage changes for code size
and memory usage is small, (−0.01%, 0%): the default values
of the features have little impact on code size and memory
usage for most features. The median percent change values
for CPU time go down by −13.41%: modifying the default
values of the features positively improves CPU time.�
�

�
�

PQ1: JSI features impact performance metrics differently;
all studied features impact at least one performance metric.
CPU time is the performance metric most improved.

Figure 1 shows that there are many outlier features for
each performance metric worthy of study in more details

Code size Memory usage CPU time

−
15

−
10

−
5

0

Figure 2: Percent changes for the 86 features without out-
liers.

in PQ2. We focus the discussion on features with the most
extreme values. ROM objects reduce memory usage by
87.93% at the cost of 25.21% increment of file size. The max-
imum improvement in code size is 11.71% with Feature 3,
DUK USE EXEC PREFER SIZE. The maximum increase of
memory usage is 10.62% with reference counting (garbage
collection). Regarding performance, the maximum improve-
ment is reached with Feature 84, DUK USE FASTINT,
with 24% while the worse is 94.5% due to Feature 6,
DUK USE PREFER SIZE. Thus, we reject H02 .�
�

�
�

PQ2: We identified 90 features impacting the performance
metrics by more than 5%. Table 1 summarises the most
impacting metrics.

Table 1 presents the two features most impacting CPU
time. The complete list of features and performance metrics
is in our replication package [30]. In Table 1, ID is an
arbitrary ID assigned to each feature for convenience; Name
is the feature name; Description is a summary of the feature
based on the documentation; Value is the tested value in
our experiments (different from Duktape default value); and
the last three columns show the percentages changes of the
performance metrics.

Feature 3 reduces code size ≈ 12% by increasing execut-
ing time around 9%; Feature 11 reduces code size 7% and
CPU time 12% while increasing memory usage≈ 1%. These
are the features that reduce the most code size. Using ROM
built-ins (Features 7–10) increases code size 25% and Feature
86 ≈ 24%. The use of ROM built-ins reduce memory usage
by about 88%, the highest reduction for all features and per-
formance metrics. Features 5, 43, and 19 reduce memory us-
age by 37%, 21%, and 11%, respectively. Feature 11 increases
memory usage by 11%, the only feature increasing memory
usage by more than 5%. It is related to the use of automatic
reference counting for garbage collection. Features 15 and
84 provide the highest reduction in CPU time, with 23%
and 16%, respectively. Feature 6 reports the worst results of
all features, increasing CPU time by 94%. Practitioners must
avoid to activate DUK USE PREFER SIZE. We observe that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 7

different combinations of features impact differently the
performance of a JS app. The (de)activation of some features
results in a high improvement of a metric while worsening
one or more metrics. Only Feature 5 presents no conflict
with any other metric but reduces compliance.

The preliminary study is useful for practitioners to make
informed decisions about the features to (de)activate from
their JSI when porting JS apps to IoT devices.�

�

	
Conclusion: there is a conflict between the three performance
metrics studied that shows the need to provide practitioners
with an automated approach to select the features that are
more advantageous for the devices that they are targeting.

6 IMPLEMENTATION

We describe the techniques and tools used for implementing
MoMIT to miniaturize JS interpreters for IoT constrained
devices. Without loss of generality, we focus on Duktape as
the JS engine to generate the miniaturized JS interpreters.

6.1 Pre-requirement Elicitation

As described in Section 4, a miniaturized JS interpreter is
comprised of compulsory and optional features. The list
of compulsory features can be inferred through a manual
inspection of the JS code and–or by asking the authors to
provide pre-requirements, or by using a JS parser, and–or
feature detection tools. The optional features form the search
space of the problem and may differ between JS interpreters.

6.2 Selection of IoT Device Candidates

We used the devices already introduced in Table 2 as the
IoT device candidates used in this work. We rank them to
set the preference that MoMIT will use to filter solutions.
In Table 3, we arbitrarily set the preferences of devices based
on price, size, cloud connections, and company support
of the candidate devices, from which Photon is the more
attractive, while BeagleBone Black is the less attractive due
to its price, size, and lack of cloud support. We did not
consider the processing power or memory capacity, as we
assume that if a JS app can be miniaturized for the SBCs,
it will be fit as well on the SoCs devices, so does not make
sense to prioritize the miniaturization to fit them.

Table 3: IoT devices used in this work

Device Name Preference
Photon 5
ESP32 4
JN5168 3
RPI 3 ModelB+ 2
BeagleBone Black 1

6.3 Feature Identification

Another contribution of this work is the classification of
Duktape interpreter options in four categories based on their
impact on performance and compliance with ES standards.
This classification is valid for any JS interpreter.

6.3.1 ECMAScript Compliance Options
Features in this category provide built-in functions to com-
ply with ES standards. Enabling/Disabling some of these
features impacts the level of compliance of the JS interpreter.
An interpreter that does not comply with the ES for which
the app was written may fail or have unexpected behaviour.
For example, ES6 requires to accept HTML commenting
style and this feature is not available on ES5.

6.3.2 Code Size Options
Features in this category reduce code size of the JS inter-
preter at the cost of some of its features, e.g., disabling
Unicode support for non-BMP characters reduces code size.

6.3.3 Memory Performance Options
Features in this category reduce the memory footprint of the
JS interpreter at the cost of CPU speed and–or code size. For
example, compiling objects and–or strings as constants and
storing them in ROM reduces startup RAM usage consider-
ably at the cost of code size and slower performance.

6.3.4 CPU Performance Options
Features in this category increase speed by reducing CPU
time at the cost of memory and–or code size, e.g., a look-up
table to convert objects-to-strings using JSON.stringify
improves performance but takes storage space.

6.4 Selection of Feature Combinations
In the last step of MoMIT, we describe solutions as bit-
vectors ~x =

{
x1, . . . , x|OF | ∈ 0, 1

}
, where xj indicates if

feature fj ∈ OF is included in the solution, with ~x : xj = 1
if it is, else 0. Let ~x be a candidate solution and Sel a function
mapping a bit-vector ~x into the set of features F ′. We define
CDR (customer’s dissatisfaction rate, −CSR), CS (code
size), MU (memory usage), and PT (CPU time) as:

CDR(~x) = −CSR(Sel(~x) ∪ ComF)
CS(~x) = CS(Sel(~x) ∪ ComF)
MU(~x) =MU(Sel(~x) ∪ ComF)
PT (~x) = PT (Sel(~x) ∪ ComF)

where CS(~x), MU(~x) and PT (~x) are the code size of
the JS interpreter, the memory usage, and the CPU time,
respectively, of the JS app with the features in ~x and the
compulsory features ComF . The direction of the optimiza-
tion for the objectives is to minimize their values, thus we
we define CDR = CSR × −1. A solution is a vector ~x
whose elements are Pareto optimal.

6.5 Dependencies among JS Interpreter Features
One of the contributions of this work is the identification of
10 hidden dependencies among the selected features, pre-
sented in Table 4 with their IDs and brief descriptions. These
dependencies, if ignored, prevent the generation of valid
JS interpreters. We identified them through our preliminary
study, in which we evaluated each feature independently,
and from our evaluation of MoMIT, during which we ran

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 8

the search process with the complete list of features and
detected compilation/execution errors. These dependencies
are not exhaustive but include the minimum sets to consider
when evaluating MoMIT using 23 JS tests.

We found that the most dependent (and restrictive)
features are related to ROM built-ins (IDs 7-10). When
activated, these features modify the values of other fea-
tures, which results in broken JS interpreters. These features
were commented out by the authors of Duktape in the
low-memory environments profile to avoid errors. These
features appear also in a profile that only activates these
features. While some undocumented dependencies among
features seem related due to their name (e.g., JSON built-in
depends on JSON support, IDs 26 and 27), other depen-
dencies are not obvious (e.g., Global built-in depends on the
Number built-in, IDs 24 and 30).

Table 4: Dependencies among features in Duktape.

ID Description
26, 27 Disabling JSON built-in requires to disable JSON support

too, but not the other way around
32, 34 Disabling regular expression support requires to disable

the string built-in as well
7–10 Storing String, and Objects in ROM requires to enable

ROM Global inherit and disabling Hstring Array index
feature

11, 14 Disabling reference counting (garbage collection) re-
quires to disable the use of double linked heap.

72–74 Minimum, Maximum and shrink limit for duktape heap
string table have to be set to the same value to avoid
resizing during runtime

16, 20 These options provide support for augmenting ES error
objects to comply with ES 5, and have to be deactivated
together

17, 21 These options augment an ES error object at throw time
and have to be deactivated together

31, 24 Disabling duktape object built-in requires to disable
global built-in too

24, 30 Disabling global built-in requires to disable number
built-in too

To avoid evaluating solutions unfeasible due to depen-
dencies among features, we devise a mechanism to repair
solutions when evaluating candidates. This mechanism de-
tects the default value of any of the features with depen-
dencies has changed: it did, it adjusts the feature value
according to Table 4. For example, if it detects that Feature
26 has been deactivated, then it deactivates Feature 27 as
well. It treats differently Features 7–10 and 72–74: if ROM
built-ins are activated, then the rest of the features must
keep their default values. We presume that this observation
is the reason for the authors of Duktape to provide a sep-
arate configuration file with only these features activated
(roms-builtins.yaml). If Features 72–74 change, which define
the maximum, minimum and shrink limit of Duktape heap
string table, then it resets them all to their minimum values
as suggested in the low memory.yaml profile of Duktape.

7 EVALUATION OF MoMIT
We now evaluate the effectiveness of MoMIT at miniatur-
izing JS interpreters to run on IoT devices based on the
code features requirements of JS apps. The quality focus
is the reduction of code size, memory usage, and CPU
time to fit a JS app in some IoT devices while considering

customers’ preferences. The perspective is that of companies
and individuals interested in porting their exiting JS apps
to IoT devices. The context consists of 23 JS tests belonging
to a JS benchmark (SunSpider 1.0.2) to test the core JS
language [31]. We selected SunSpider because: (1) it is a
complete benchmark to test the JS language; (2) it is a
balanced, real-world test suite focusing on real developers’
problems, including math computation, string processing,
JSON parsing, etc.; (3) it does not make any assumptions
about the architecture of the system; and, (4) it has been
used to compare the performance of different Web browsers.

Table 5 presents the tests in our evaluation, with their
compulsory features. It also shows baseline memory usages
and CPU times when using default Duktape features. The
last column shows the number of devices on which the JS
tests can be ported based on the values in Table 3. We omit
code size because it is the same for all JS tests when using
default features: 570 KB. We excluded three tests because
they include files of more than 100 KB each and, thus, could
not fit within the space limitations of JN5168 and its 32 KB,
making it impossible for MoMIT to find any solution.

Table 5: 23 JS tests from SunSpider 1.0.2.

JS test ComF MU (KB) PT (Sec.) Devices
3d-cube 15; 29; 34;31 166.496 0.205 3
3d-morph 15; 29 132.000 0.460 3
3d-raytrace 15; 19; 29;31 387.936 0.250 3
access-binary-trees 29 179.440 0.235 3
access-fannkuch 15;31;34 132.704 0.470 3
access-nbody 15; 29 146.848 0.415 3
access-nsieve 15 131.296 0.140 3
bitops-3bit-bits-in-byte 128.176 0.440 3
bitops-bits-in-byte 128.528 0.465 3
bitops-bitwise-and 126.144 1.275 4
bitops-nsieve-bits 15 130.624 0.775 3
controlflow-recursive 184.832 0.210 3
crypto-aes 15; 19; 29; 34; 32 178.216 0.210 3
crypto-md5 15; 34;32 176.544 0.355 3
crypto-sha1 15; 34;32 163.088 0.340 3
date-format-tofte 15; 19;24;31;34;32;7;8;9;10 1,817.200 0.535 2
date-format-xparb 19;24;31;34;32;7;8;9;10 183.824 0.335 3
math-cordic 19 132.720 0.475 3
math-partial-sums 29 129.968 0.495 3
math-spectral-norm 29 144.240 0.190 3
string-base64 29; 34;32 275.632 0.725 3
string-fasta 15; 34;32 140.064 0.875 3
string-validate-input 15; 29; 34;32 614.464 1.160 2
Median 3

We use two implementations of MoMIT, one with the
NSGA-II algorithm and a dedicated repair function (cf., Sec-
tion 6.5), the other with a random search with repair, which
we name RS+. We chose NSGA-II because it was success-
fully applied in many previous works. We use RS+ because
it is a simple approach, easy to implement, that serves as
baseline for NSGA-II. We included a repair function in RS+
to ensure that MoMIT produces valid solutions (the odds
of generating valid solutions using a pure random search is
minimal, as discussed in previous works [10], [11]).

7.1 Research Questions

We ask the following research questions in our evaluation:
(RQ1) To what extent can MoMIT miniaturize JS tests
to run on constrained devices? We want to quantify
the improvement of the performance metrics after minia-
turizing the JS interpreter and, based on these measures,
to determine the number of IoT devices on which the JS

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 9

apps can run. We compute the percentage changes of the
performance metrics before and after miniaturization with
Equation 5 for CS, MU , and PT metrics. We define NDA
as the difference between numbers of devices running the
JS app before and after miniaturizing the JS interpreter. We
consider a JS app to be ported to a device d if its code size
and memory usage are less than or equal to the storage and
memory capacity of d for one or more solutions.
(RQ2) What is the most convenient algorithm to instan-
tiate MoMIT? We want to identify the best algorithm to
instantiate MoMIT in terms of CPU time and quality of
the solutions. We compute the hypervolume (HV) [32] and
Pareto front size (PFS) indicators to measure the quality of
the solutions. HV considers the convergence and diversity
of the resulting approximation set. Higher values of HV are
desirable. PFS measures the number of solutions included
in a Pareto front. Higher PFS indicates that an algorithm
finds more non-dominated solutions. We compute HV and
PFS over the Pareto reference front obtained for each JS
test, i.e., the non-dominated solutions found over several
runs by all the algorithms evaluated on a given JS test. We
compute the non-parametric Mann–Whitney U test at 5%
significance level of confidence to determine the significance
of the obtained results. We correct the obtained p-values
with the Bonferroni p-value adjustment procedure [33] to
reduce the risk of Type-I error (corrected α = 0.017).
(RQ3) Can MoMIT miniaturize apps involving third-
party libraries? Real world JS apps include third-party
libraries to reuse existing functionality and provide more
unique features. We study whether MoMIT can miniaturize
JS apps involving third-party libraries using the same met-
rics than RQ1. We extend one of the JS tests in RQs 1 and 2
(date-format-tofte) to format and manipulate numbers using
Numeral.js [34] from node.js. We choose node.js because it
is non-trivial, with more than seven years of development.
It addresses common problems for JS developers. We name
our extension of date-format-tofte, date-format-tofte-plus.

7.2 Tuning of Parameters

As with any search algorithm, we must tune the control
parameters of the algorithms used by MoMIT. We must keep
the numbers of evaluations and of individuals (for NSGA-II)
relatively low to produce solutions in reasonable amounts
of time. Indeed, MoMIT must build a JS interpreter using
Duktape Python script, which takes about 20 seconds on our
test machine, then compile the harness code, and execute
the app 10 times to average the memory and CPU usages
(which may vary between executions).

The transformation operators used for NSGA-II are
single-point crossover and bit-flip mutation; the selection
operator is binary tournament [25]. We ran a grid search [35]
for the three parameters: population size (µ), crossover
probability (CXPB), and mutation probability (MUTPB).
Our grid search space considered the following values: {µ =
[10]} × {CPBX = [0.6, 0.7, 0.8, 0.9]} × {MUTPB = [0.1, 0.15,
0.2, 0.25]}. We use HV as quality indicator. We found the
highest HV with the following parameters: µ = 10, CPBX =
0.8, and MUTPB = 0.1.

Also, we run MoMIT 30 times on each app to reduce
the observational error. We report median values for the

grid search and in the evaluation of MoMIT. We use the
number of fitness-function evaluations as stopping criteria.
As the number of evaluations increase, MoMIT obtains bet-
ter quality solutions on average. This increase in quality is
usually very fast when the maximum number of evaluation
is low because the slope of the curve showing quality versus
maximum number of evaluations is high at the beginning
of the search. The slope then tends to decrease as the search
progresses. We set the number of evaluations to 250 because,
with this value, the slope of the curve is low enough, i.e.,
MoMIT cannot miniaturize more a JS interpreter to fit the
most constrained device.

We implemented NSGA-II and RS+ with JMetalPy, a
framework for multiobjective optimization in Python [36].

8 RESULTS

We now answer the research questions.

8.1 RQ1: To what extent can MoMIT miniaturize JS
tests to run on constrained devices?

Table 6 shows the results obtained from MoMIT after minia-
turizing the 23 JS tests. The values presented in Columns
2–4 are median values and the corresponding interquartile
ranges (IQRs) obtained from the Pareto reference front.
Column 5 shows the number of new IoT devices on which
the JS tests can run after miniaturization. Column 6 shows
the total number of devices on which the JS tests run.

We observe that the code sizes of 20 out of the 23 tests
were reduced by more than 20% with math-partial-sums
the test with the maximum reduction (36.58%). Memory
usage exhibits the highest reduction of the three metrics
with a median of 55.51%, and a maximum reduction of
92.93% for date-format-tofte, which has the largest number of
compulsory features and, thus, the smaller search space for
MoMIT. CPU time reduction has a median of 35.71% with a
maximum reduction of 76.34% for bitops-bits-in-byte.

The median number of IoT devices on which we can
deploy the JS tests is three, using Duktape default configura-
tion values (cf., Table 5). It reaches four out of five devices
after miniaturization. The JS tests for which NDA increased
by more than one device are date-format-tofte and string-
validate-input. For these two tests, the memory usage was
higher than the capacity of all of the IoT devices before
miniaturization. MoMIT generated interpreter allowing to
run these JS apps to most devices. For string-validate-input,
five solutions (out of 66) on the Pareto front improve its
memory usage by more than 70%.

Three tests could not fit in more IoT devices despite the
reductions because MoMIT could not reduce sufficiently the
footprint of the JS interpreter: 3d-raytrace, bitops-bitwise-and,
and string-base64. For the first and third tests, the memory
improvement was not enough to fit within the memory of
the Photon. For the second, the original test already fits on
four of the five devices and running it on the all devices
would require reducing by more than half the original code
size and using one third of the memory.

MoMIT could not fit any JS test to the JN5168 micro-
controller due to its low memory and storage capacities.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 10�

�

	
RQ1: MoMIT can improve performance metrics of JS inter-
preters by removing unnecessary features to execute JS apps
in more constrained devices without modifying their original
source code.

8.2 RQ2: What is the most convenient algorithm to
instantiate MoMIT ?
Table 7 shows the computation times of the two compared
algorithm, without p and δ values because all the differ-
ences were statistically significant with large effect size.

NSGA-II performs faster than RS+ because the generic
NSGA-II operators generate more repeated solutions in
comparison to RS+ and, thus, explore less solutions. For
both algorithms, we store in a dictionary the objective values
of each evaluated solution to reduce computation time:
when an algorithm finds an existing solution, it retrieves the
objective values stored in the dictionary directly. The search
algorithms per se are not the limiting factors in MoMIT but
the compilation of the JSI and execution of the JS apps.

Table 8 shows the numbers of non-dominated solutions
contributed by each algorithm to the Pareto reference front.
The numbers of solutions contributed by RS+ overcome
those of NSGA-II, indicating poor performance of the latter
one, according to PFS. Finally, Table 9 reports the average
hypervolume values for each algorithm. It shows that RS+
overcomes NSGA-II.

We also compared NDA for NSGA-II and RS+ and
report that RS+ overcame NSGA-II for two tests only: date-
format-tofte and string-validate-input.

Results show that RS+ overcomes NSGA-II, which is
a well-known and widely used evolutionary algorithm,
possibly due to the limited numbers of evaluations and
the small population size that could prevent NSGA-II to
find better solutions. To identify the reasons for the low
performance of NSGA-II and considering the high cost of
more evaluations, we ran a microexperiment using only
two randomly-selected JS tests and applied both NSGA-
II and RS+. We included an additional search algorithm,
SWAY [11], designed for situations where evaluating so-
lutions in the search space is expensive but with a high
correlation between decision and search spaces.

SWAY performs most of its evaluations in the deci-
sion space and limits the number of objective evaluations
compared to EAs. We used the original implementation
of SWAY7. We recast the problem of miniaturization as a
software product line (SPL) in which each combination of
features forms a product, i.e., a JS interpreter. We defined a
list of Boolean predicates to model the dependency among
JS interpreter features and compulsory features for each
selected JS test using the conjunctive normal form (CNF).
The predicates defined a valid solution. We used the split
function designed for binary decision spaces and inspired
by research on radial basis function kernel [37].We then
fed the Boolean predicates to a SAT solver responsible for
finding all satisfiable CNF expressions within the size of the
population. Then, SWAY clustered the population according
to their decision variables using a radial coordinate system
and obtained solutions [11].

7. https://github.com/ginfung/FSSE

For all three algorithms, we performed 10 runs with
250 and 15,000 evaluations. We set a population of 100 for
NSGA-II. We use same control parameters for SWAY as
defined by its authors (except for number of evaluations).

Table 10 shows the execution times (ETs) and quality
metrics of the solutions from the microexperiment. We
recomputed HV with only 3 objectives. With respect to
ETs, SWAY is the fastest approach, with only 8 and 11
minutes (median values), because it performs less objective
evaluations compared to the other algorithms. NSGA-II is
the second fastest, with execution times of about 27 and 42
hours. RS+is slowest with 67 and 105 hours approximately.
Results for HV are similar for 250 and 15,000 evaluations:
RS+ outperforms NSGA-II, which outperforms SWAY. RS+
reports higher gain for PFS for non-dominated solutions
added to the Pareto front; NSGA-II contributed few dom-
inated solutions and SWAY none.

The HV metric for NSGA-II considerably improved from
0.49 to 0.82 for access-fannkuch JS test. It remained the same
for 3d-cube due to its mandatory features. We thus conclude
that increasing the number of evaluations for NSGA-II and
RS+ increases HV and PFS values at the costs of time.
The number of new devices reached after miniaturizing
remained the same (Column 5) than with 250 evaluations.
SWAY performed faster but could not reach the same num-
ber of devices for 3d-cube. It did not contribute any new
solutions to the Pareto front: the solutions generated by
SWAY were all dominated by those of the other algorithms.

After considerably augmenting the number of evalu-
ations and obtaining similar results, we suggest that the
inferior performance of NSGA-II in comparison with RS+
is caused by the transformation operators (crossover and
mutation) employed, which are typically used for binary
solutions, but not necessary the most suitable ones for this
particular problem. With respect to SWAY, we are surprised
by the low quality of the obtained results. We suggest this
is the result of assuming that there is a direct relationship
between the decision variables and the objective values, i.e.,
the fact that SWAY clusters solutions based on the numbers
of ones/zeros might be appropriate for SPLs where “one”
means adding a feature/component and “zero” otherwise.
On the other hand, in the context of Duktape features the
concept of “one” equal to adding extra functionality does
not hold. For example, consider feature 5 from Table 1,
which default value is “zero”, and when switch it to “one”
removes ES compliance to reduce memory usage. In other
words, having more “ones” does not imply adding more
functionality to the interpreter in all cases.�

�

�

RQ2: The best algorithm for MoMIT is RS+ by the quality
of its solutions and the number of devices enabled. NSGA-
II performs faster than RS+ and can reach almost the same
number of devices. SWAY is the fastest but worst in terms
of quality metrics.

8.3 RQ3: Can MoMIT miniaturize apps involving third-
party libraries?
Table 11 presents the results of applying MoMIT to date-
format-tofte-plus, which uses Numeral of the node.js library.
MoMIT can reduce code size, memory usage, and CPU

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 11

Table 6: Results of the miniaturization process using MoMIT on 23 JS tests

JS Test δCS (%) δMU (%) δPT (%) NDA Devices
3d-cube -5.67 (54.37) -55.51 (15.56) -31.71 (14.02) 1 4
3d-morph -12.56 (59.18) -67.26 (19.96) -34.78 (8.69) 1 4
3d-raytrace -28.19 (16.88) -15.89 (293.95) -8.00 (24.00) 0 3
access-binary-trees -7.64 (60.37) -49.63 (15.24) -31.91 (2.13) 1 4
access-fannkuch -30.13 (13.43) -53.94 (35.17) -36.70 (27.92) 1 4
access-nbody -30.67 (12.12) -50.93 (17.73) -37.35 (14.46) 1 4
access-nsieve -30.94 (23.61) -68.45 (6.34) -35.71 (28.57) 1 4
bitops-3bit-bits-in-byte 24.72 (50.28) -82.61 (6.16) -27.27 (0.00) 1 4
bitops-bits-in-byte -33.62 (14.28) -69.53 (7.48) -76.34 (16.13) 1 4
bitops-bitwise-and -34.57 (41.73) -75.94 (5.44) -34.12 (14.70) 0 4
bitops-nsieve-bits -31.21 (50.68) -66.62 (72.32) -34.19 (59.03) 1 4
controlflow-recursive -33.89 (12.27) -63.58 (12.34) -19.05 (19.05) 1 4
crypto-aes -28.97 (11.30) 4.56 (48.39) -26.60 (51.06) 1 4
crypto-md5 -31.59 (21.24) -35.54 (59.06) -60.56 (28.17) 1 4
crypto-sha1 -24.58 (56.96) -51.31 (21.88) -41.18 (25.00) 1 4
date-format-tofte -31.03 (4.18) -92.93 (3.36) -55.14 (20.09) 2 4
date-format-xparb -30.59 (13.57) -25.78 (33.56) -37.31 (11.57) 1 4
math-cordic -35.57 (11.68) -61.37 (12.99) -43.16 (24.74) 1 4
math-partial-sums -36.58 (10.22) -62.58 (7.57) -49.49 (6.82) 1 4
math-spectral-norm -9.06 (58.78) -63.18 (15.72) -42.11 (5.26) 1 4
string-base64 -32.1 (7.29) -22.8 (892.29) -24.14 (15.52) 0 3
string-fasta -28.62 (6.19) -50.11 (37.20) -37.14 (16.57) 1 4
string-validate-input -29.53 (6.93) -11.34 (6.82) -12.43 (21.16) 2 4
Total Median (IQR) -30.59 (38.99) -55.51 (28.66) -35.71 (12.07) 1 4

Table 7: Execution times of the search algorithms in secs. (All
differences statistically significant with large effect sizes.)

JS Test NSGA-II RS+
3d-cube 2,642 5,035
3d-morph 2,987 5,948
3d-raytrace 2,679 4,253
access-binary-trees 2,419 5,004
access-fannkuch 3,198 6,511
access-nbody 2,606 5,375
access-nsieve 3,163 6,272
bitops-3bit-bits-in-byte 2,547 4,800
bitops-bits-in-byte 2,571 4,982
bitops-bitwise-and 3,462 6,843
bitops-nsieve-bits 2,834 5,619
controlflow-recursive 2,340 4,778
crypto-aes 2,836 4,702
crypto-md5 2,786 3,978
crypto-sha1 2,785 4,009
date-format-tofte 2,461 4,375
date-format-xparb 2,536 3,974
math-cordic 2,857 4,261
math-partial-sums 2,879 4,122
math-spectral-norm 2,534 3,736
string-base64 3,947 6,328
string-fasta 3,285 4,833
string-validate-input 9,793 16,791
Total Median 2,786 4,833

time by 22.89%, 77.41%, 13.95%, respectively. It can port the
extended JS test to one more device than the original test.

MoMIT cannot port it to more devices because the JS app
now include the third-party library, which brings overhead
in terms of code size and memory usage. Thus, we show
that MoMIT works as well with third-party libraries but
that these libraries limit its search space and constrain the
number of devices on which it can port JS apps. We discuss
further third-party libraries in Section 9.

The process of miniaturizing JS apps that make use of
third-party libraries is an iterative process during which
developers must identify JS engine features required to
run their app with the libraries that they are import-
ing. They must implement Duktape function duk_ret_t

Table 8: Pareto optimal solutions by NSGA-II and RS+.

JS test Solutions NSGA-II RS+
3d-cube 102 39 (38.24%) 63 (61.76%)
3d-morph 73 35 (47.95%) 38 (52.05%)
3d-raytrace 81 3 (3.70%) 78 (96.30%)
access-binary-trees 89 47 (52.81%) 42 (47.19%)
access-fannkuch 66 7 (10.61%) 59 (89.39%)
access-nbody 44 13 (29.55%) 31 (70.45%)
access-nsieve 33 8 (24.24%) 25 (75.76%)
bitops-3bit-bits-in-byte 71 29 (40.85%) 42 (59.15%)
bitops-bits-in-byte 40 10 (25.00%) 30 (75.00%)
bitops-bitwise-and 36 9 (25.00%) 27 (75.00%)
bitops-nsieve-bits 52 7 (13.46%) 45 (86.54%)
controlflow-recursive 40 7 (17.50%) 33 (82.50%)
crypto-aes 58 6 (10.34%) 52 (89.66%)
crypto-md5 37 3 (8.11%) 34 (91.89%)
crypto-sha1 63 6 (9.52%) 57 (90.48%)
date-format-tofte 24 2 (8.33%) 22 (91.67%)
date-format-xparb 66 4 (6.06%) 62 (93.94%)
math-cordic 55 9 (16.36%) 46 (83.64%)
math-partial-sums 36 1 (2.78%) 35 (97.22%)
math-spectral-norm 53 1 (1.89%) 52 (98.11%)
string-base64 55 11 (20.00%) 44 (80.00%)
string-fasta 37 1 (2.70%) 36 (97.30%)
string-validate-input 66 11 (16.67%) 55 (83.33%)

mod_search(duk_context *ctx)
8 so that it finds the

third-party libraries. This function allows Duktape to parse
the third-party libraries and register them as global objects
to use their functionalities in the JS app.

Adding third-party libraries and, thus possibly, addi-
tional features could add overhead in terms of code size,
memory usage, and CPU time when compared to an app
not requiring these libraries. However, this also reduces the
search space of the problem. In our study, we mitigated
the impact incurred by loading Numeral.js in memory by
minifying9 the file, which reduced it from 33Kb to 12Kb.

8. https://github.com/svaarala/duktape/blob/master/extras/
module-duktape/README.rst

9. Minifying is a typical practice in JS, during which developers
remove spaces and indentation to reduce the size of a JS file to improve
performance.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 12

Table 9: Average HV values, significance and effect size.

JS Test NSGA-II RS+ p-value δ
3d-cube 0.78 0.88 2.31E-10 Large
3d-morph 0.85 0.90 5.34E-08 Large
3d-raytrace 0.56 0.83 1.69E-17 Large
access-binary-trees 0.74 0.80 3.03E-03 Medium
access-fannkuch 0.49 0.70 2.49E-13 Large
access-nbody 0.27 0.37 8.00E-06 Large
access-nsieve 0.33 0.46 3.02E-05 Large
bitops-3bit-bits-in-byte 0.19 0.38 3.43E-08 Large
bitops-bits-in-byte 0.19 0.34 1.09E-06 Large
bitops-bitwise-and 0.28 0.44 5.18E-09 Large
bitops-nsieve-bits 0.45 0.61 1.09E-06 Large
controlflow-recursive 0.17 0.32 7.24E-10 Large
crypto-aes 0.77 0.91 1.69E-17 Large
crypto-md5 0.42 0.74 1.69E-17 Large
crypto-sha1 0.43 0.72 2.03E-16 Large
date-format-tofte 0.34 0.78 1.69E-17 Large
date-format-xparb 0.34 0.80 1.69E-17 Large
math-cordic 0.23 0.44 9.75E-14 Large
math-partial-sums 0.21 0.46 1.69E-17 Large
math-spectral-norm 0.17 0.38 3.21E-16 Large
string-base64 0.87 0.92 1.02E-07 Large
string-fasta 0.37 0.84 1.69E-17 Large
string-validate-input 0.84 0.92 1.09E-09 Large

We identified five JS engine features required to use
Numeral.js library. These features are related to JSON and
math functionalities taken from Duktape builtins, which
were not required before adding Numeral.js to date-format-
tofte. All these features are disabled on Duktape low memory
profile configurations, which means that adding Numeral.js
mostly impacted memory usage. Yet date-format-tofte-plus
still run on the same number of devices than the original
test date-format-tofte. MoMIT could reduce 93% of memory
usage, which translates into one additional device (ESP23)
to deploy it, compared to using Duktape default features.�
�

�
�

RQ3: MoMIT can miniaturize JS apps that use third-party
libraries.

9 DISCUSSION

We now discuss the results of evaluating MoMIT.

9.1 MoMIT Extensibility

CPython, a C implementation of Python, was manually
customized to generate Python interpreters for embedded
devices (e.g., PyMite and TinyPython) by removing unessen-
tial features and supporting a subset of Python syntax.
MoMIT can be extended to CPython, or other programming
languages using interpreters/virtual machines, by adapting
it to generate, e.g.,, CPython interpreters and providing
the PRs of Python apps. Thus, developers do not need to
miniaturize manually CPython and can focus on their apps.

Miniaturization in general is about reducing stor-
age, memory, and CPU usages. Previous approaches, e.g.,
MoMS [18], focused on apps without considering their run-
time support. They work well for apps compiled directly
into executables but are not adequate for interpreters/vir-
tual machines, for which MoMIT works well. Hence, MoMIT
is complementary to previous works.

Listing 1: Compiling harness using GCC with default options
options

gcc −std=c99 −o harness harness.c duktape.c −lm

Listing 2: Compiling harness using GCC with optimized
flags for reducing code size on ARM devices

gcc −o harness −m32 −std=c99 −Wall −Os −fomit−frame−pointer
−flto −fno−asynchronous−unwind−tables −ffunction−sections
−Wl,−−gc−sections −fno−stack−protector −Iduktape−src
duktape.c harness.c −lm

Compilation options also complement MoMIT and pre-
vious works. We used default compilation options to be
conservative and leave their tuning to developers. Hence,
MoMIT is general without preventing further optimisations.
For example, we compiled the harness using default GCC
options (as in our evaluation, cf., Listing 1 and with options
optimized for ARM processors (cf., Listing 2) and observed
that code size went down from 362 KB to 132 KB.

9.2 MoMIT Caveats and Limitations

We observed that some programming practices require cer-
tain JS features, which reduce performance. For example,
date-format-tofte modifies the Date prototype, which prevents
using ROM built-ins because they make the Date prototype
unmodifiable. Rewriting the app to remove such practices
would allow MoMIT to minimize further the JS interpreter.

We showed that MoMIT can handle apps using third-
party libraries. However, they must be used with caution:
if the use of a third-party library is small, developers could
reimplement its functionalities directly in C in the JS inter-
preter to reduce code size and memory usage.

Some IoT devices have been steadily promoted to full-
fledged computers thank to advances in computing hard-
ware and battery technologies. The RPI is used in many
hobby, industrial, and research projects. Hence, developers
should consider their capabilities even if RPIs and other
such computers can hardly be used in many scenarios
because of their form factors, their energy consumptions,
their costs, and other considerations. For example, it is not
environmentally-friendly and cost-effective to drop hun-
dreds or thousands of RPIs in forests to monitor droughts
and fires when compared to Photon or ESP32. RPIs should
remain at the “edge” of an IoT systems.

10 THREATS TO VALIDITY

We following common guidelines for empirical studies [38].
Construct validity concerns the relation between theory

and observations. Imprecision in the measurements per-
formed in the evaluation could threaten this validity. We
measured code size, memory usage and CPU time using
well-known Linux commands and repeated the measure-
ments 10 times for each JS app execution and 30 times when
applying MoMIT in Section 7. We cannot exclude the impact
of the operating system, which we mitigated by performing
multiple executions in a dedicated RPI, disconnected from
the Internet, and running only the tools and scripts used for
the evaluation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 13

Table 10: Execution times and quality metrics of the microexperiment (median ETs and mean HV).

JS Test EA 250 evaluations 15,000 evaluations
NDAET (sec.) HV PFS ET (secs.) HV PFS

3d-cube
NSGA-II 2,642 0.67 4 96,321 0.67 7 1
RS+ 5,035 0.90 55 240,132 0.94 107 1
SWAY N/A N/A NA 488 0.49 0 0

access-fannkuch
NSGA-II 3,198 0.49 2 149,514 0.82 15 1
RS+ 6,511 0.73 51 377,487 0.85 69 1
SWAY N/A N/A N/A 680 0.24 0 1

Table 11: Median quality metrics of MoMIT applied to a JS
test that uses a third-party library.

JS Test δCS δMU δPT NDA Devices
date-format-
tofte-plus

-22.89% -77.41% -13.95% 1 3

Internal validity pertains to the chosen JS apps, used
tools, and applied analysis methods. We used a particu-
lar yet representative subset of JS tests as proxy for JS
apps. We used well-known theory and measurements to
ensure statistical validity of the performance metrics. We
used NSGA-II to perform our benchmarks. However, multi-
objective optimization algorithms exist with possibly better
performance, like MOEA/D or MOEA/D-DE [39]. Hence,
we may not have achieve the best performance and future
works includes using these recent algorithms.

Conclusion validity concerns the relation between the
treatment and the outcome. We tested and met the as-
sumptions of the constructed statistical models: e.g., non-
parametric tests, Mann-Whitney U Test and Cliff’s δ, that do
not make assumptions on the underlying data distributions.

Reliability validity threats concern the possibility of repli-
cating this study. The tools used in this study are open-
source and can be accessed with the data collected an
generated in the online replication package [30] .

External validity regards the generalization of our results,
which must be interpreted carefully and could depend on
the specific devices, operating systems, and JS apps. For
example, if an app needs specialised hardware, such as a
GPS, then MoMIT has a reduced search space to miniaturize
this app because of this hardware constraint. Although,
we miniaturized JS interpreters, MoMIT applies to other
interpreters, e.g., CPython. We discussed all the results and
put them in perspectives.

11 CONCLUSION AND FUTURE WORK

We presented MoMIT, an automated, multiobjective ap-
proach for miniaturizing JS apps to run on constrained
IoT devices. MoMIT supports companies wanting to deploy
their apps on different devices from the same source code.

First, we performed a preliminary study to identify the
features impacting the performance in terms of storage,
memory usage, and CPU time of JS apps running on the
Duktape interpreter. We identified 86 features out of 283.
We identified 10 hidden dependencies among 20 of the 86
features and corrected a bug2 preventing the compilation
of Duktape in some scenarios. Then, we formulated minia-
turization as a multiobjective problem, implemented using
NSGA-II, RS+, and SWAY.

We evaluated MoMIT by miniaturizing 23 JS tests from
SunSpider and showed that it could reduce code size,
memory usage, and CPU time by 31%, 56%, and 36%,
respectively (medians). MoMIT could miniaturize 21 JS
test apps out of 23 to run on SoCs the size of a quarter
coin: Photon and ESP32. We extended one of these apps to
use the popular node.js third-party library and showed that
MoMIT could also miniaturize apps using such libraries.

We released the source code of MoMIT as open-source so
researchers and practitioners can benefit from our work and
replicate our evaluation [30].

We want to expand MoMIT to other interpreters, e.g.,
CPython. We also want to detect dependencies among fea-
tures automatically and compare the performance of MoMIT
using other search algorithms, like MOEA/D-DE.

ACKNOWLEDGMENTS

This work has been supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).
Special thanks to Sami Vaarala for his valuable help with
Duktape.

REFERENCES

[1] H. Ma, L. Liu, A. Zhou, and D. Zhao, “On networking of internet
of things: Explorations and challenges,” IEEE Internet of Things
Journal, vol. 3, no. 4, pp. 441–452, 2016.

[2] “Stackoverflow developer survey,” https://insights.
stackoverflow.com/survey/2017#top-paying-technologies,
accessed: 2018-12-29.

[3] “Programming language skills (itjobswatch),” https:
//www.itjobswatch.co.uk/default.aspx?page=1&sortby=5&
orderby=0&q=&id=900&lid=2618, accessed: 2018-12-29.

[4] “Employability tech & it skills, salary & wage analytics (world-
wide),” https://gooroo.io/analytics#.XCgBxBhOmWh, accessed:
2018-12-29.

[5] M. Mossienko, “Automated cobol to java recycling,” in Software
Maintenance and Reengineering, 2003. Proceedings. Seventh European
Conference on. IEEE, 2003, pp. 40–50.

[6] A. E. Hassan and R. C. Holt, “A lightweight approach for migrat-
ing web frameworks,” Information and Software Technology, vol. 47,
no. 8, pp. 521–532, 2005.

[7] T. Tonelli et al., “Swing to swt and back: Patterns for api migration
by wrapping,” in Software Maintenance (ICSM), 2010 IEEE Interna-
tional Conference on. IEEE, 2010, pp. 1–10.

[8] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang,
“Search based software engineering for software product line en-
gineering: a survey and directions for future work,” in Proceedings
of the 18th International Software Product Line Conference-Volume 1.
ACM, 2014, pp. 5–18.

[9] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, and G. Saake, “Predicting performance via au-
tomated feature-interaction detection,” in Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, 2012,
pp. 167–177.

[10] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, “Scalable
product line configuration: A straw to break the camel’s back,”
in Automated Software Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on. IEEE, 2013, pp. 465–474.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 14

[11] J. Chen, V. Nair, R. Krishna, and T. Menzies, “”sampling” as a
baseline optimizer for search-based software engineering,” IEEE
Transactions on Software Engineering, pp. 1–1, 2018.

[12] A. H. Ashouri, G. Palermo, and C. Silvano, “An evaluation of
autotuning techniques for the compiler optimization problems,”
in RES4ANT@DATE, ser. CEUR Workshop Proceedings, vol. 1643.
CEUR-WS.org, 2016, pp. 23–27.

[13] T. C. de Souza Xavier and A. F. da Silva, “Exploration of compiler
optimization sequences using a hybrid approach,” Computing
and Informatics, vol. 37, no. 1, pp. 165–185, 2018. [Online].
Available: http://www.cai.sk/ojs/index.php/cai/article/view/
2018\ 1\ 165

[14] D. Plotnikov, D. Melnik, M. Vardanyan, R. Buchatskiy, R. Zhuykov,
and J.-H. Lee, “Automatic tuning of compiler optimizations
and analysis of their impact,” Procedia Computer Science,
vol. 18, pp. 1312 – 1321, 2013, 2013 International Conference
on Computational Science. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1877050913004419

[15] G. Luque and E. Alba, “Finding best compiler options
for critical software using parallel algorithms,” in Intelligent
Distributed Computing XII, 12th International Symposium on
Intelligent Distributed Computing, IDC 2018, Bilbao, Spain,
15-17 October 2018, 2018, pp. 71–81. [Online]. Available:
https://doi.org/10.1007/978-3-319-99626-4\ 7

[16] K. Georgiou, C. Blackmore, S. Xavier de Souza, and K. Eder,
“Less is more: Exploiting the standard compiler optimization
levels for better performance and energy consumption,”
CoRR, vol. abs/1802.09845, 2018. [Online]. Available: http:
//arxiv.org/abs/1802.09845

[17] M. Di Penta, M. Neteler, G. Antoniol, and E. Merlo, “A language-
independent software renovation framework,” Journal of Systems
and Software, vol. 77, no. 3, pp. 225–240, 2005.

[18] N. Ali, W. Wu, G. Antoniol, M. Di Penta, Y.-G. Guéhéneuc, and
J. H. Hayes, “Moms: Multi-objective miniaturization of software,”
in Software Maintenance (ICSM), 2011 27th IEEE International Con-
ference on. IEEE, 2011, pp. 153–162.

[19] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolution-
ary Algorithms for Solving Multi-Objective Problems, 2nd ed. New
York: Springer, 2007.

[20] K. Deb, Multi-objective Optimization using Evolutionary Algorithms.
Chichester: Wiley, 2001.

[21] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: A short review,” in 2008 IEEE Congress on
Evolutionary Computation (IEEE World Congress on Computational
Intelligence), 2008, pp. 2419–2426.

[22] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Computing Surveys, vol. 48, no. 1, pp.
13:1–13:35, 2015.

[23] X. Cai, Z. Yang, Z. Fan, and Q. Zhang, “Decomposition-based-
sorting and angle-based-selection for evolutionary multiobjective

and many-objective optimization,” IEEE Transactions on Cybernet-
ics, vol. 47, no. 9, pp. 2824–2837, 2017.

[24] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with
adaptive weight adjustment,” Evolutionary Computation, vol. 22,
no. 2, pp. 231–264, 2014.

[25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[26] A. Zhou, B. Y. Qu, H. Li, S. Z. Zhao, P. N. Suganthan, and
Q. Zhang, “Multiobjective evolutionary algorithms: A survey of
the state of the art,” Swarm and Evolutionary Computation, vol. 1,
no. 1, pp. 32–49, 2011.

[27] A. Gerber. (2017) Key concepts and skills for getting started
in iot. [Online]. Available: ”https://developer.ibm.com/articles/
iot-key-concepts-skills-get-started-iot/”

[28] ——. (2017) Choosing the best hardware for your next
iot project. [Online]. Available: ”https://developer.ibm.com/
articles/iot-lp101-best-hardware-devices-iot-project/”

[29] V. et. al. (2019) Duktape official website. [Online]. Available:
”https://www.duktape.org/”

[30] R. Morales, R. Saborido, and Y.-G. Guhneuc. (2019) MoMIT
replication package. [Online]. Available: ”https://moar82.github.
io/momit data/”

[31] ecma International. (2019) Sunspider javascript benchmark
1.0.2. [Online]. Available: ”https://webkit.org/perf/sunspider/
sunspider.html”

[32] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
a comparative case study and the strength pareto approach,”
evolutionary computation, IEEE transactions on, vol. 3, no. 4, pp. 257–
271, 1999.

[33] C. Bonferroni, “Teoria statistica delle classi e calcolo delle proba-
bilita,” Pubblicazioni del R Istituto Superiore di Scienze Economiche e
Commericiali di Firenze, vol. 8, pp. 3–62, 1936.

[34] A. W. Draper. (2012) Numeral.js. a javascript library for
formatting and manipulating numbers. [Online]. Available:
”http://numeraljs.com/”

[35] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13, no. Feb,
pp. 281–305, 2012.

[36] A. Benitez-Hidalgo, A. J. Nebro, J. Garcia-Nieto, I. Oregi, and
J. Del Ser, “jmetalpy: a python framework for multi-objective
optimization with metaheuristics,” arXiv preprint arXiv:1903.02915,
2019.

[37] K.-M. Chung, W.-C. Kao, C.-L. Sun, L.-L. Wang, and C.-J. Lin,
“Radius margin bounds for support vector machines with the rbf
kernel,” Neural computation, vol. 15, no. 11, pp. 2643–2681, 2003.

[38] R. K. Yin, Case Study Research: Design and Methods - Third Edition,
3rd ed. SAGE Publications, 2002.

[39] H. Li and Q. Zhang, “Multiobjective optimization problems with
complicated pareto sets, moea/d and nsga-ii,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 2, pp. 284–302, April 2009.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2020 15

Rodrigo Morales is a full-time lecturer at Con-
cordia University in Montréal, Canada. He ob-
tained his BS. degree in computer science in
2005 from Polytechnic of Mexico. In 2008, he ob-
tained his MS. in computer technology from the
same University, where he also worked as a Pro-
fessor in the computer Science department for
five years. He has also worked in the bank indus-
try as a software developer for more than three
years. He obtained his Ph.D. degree in computer
engineering from Polytechnique Montréal where

he earned the best thesis award of 2017. He has published in top
software engineering Journals and like IEEE TSE, ESEM, and JSS and
top conferences including ICSE, and SANER. He is one of the main
organizers of the 1st International Workshop on Software Engineering
Research & Practices for the Internet of Things (SERP4IoT), co-located
with ICSE 2019, and actively participate as committee member of IC-
SME and ICPC conferences.

His research interests include software design quality, energy effi-
ciency, automated-refactoring, anti-patterns, and mobile apps.

Rubén Saborido is a researcher at the Network-
ing and Emerging Optimization group at the De-
partment of Computer Science at University of
Malaga (Spain), from 2019. He received his BS.
degree in Computer Engineering and his MS. in
Software Engineering and Artificial Intelligence
from University of Malaga (Spain), where he
worked for three years as a researcher assistant.
In 2017, he received a Ph.D. in Computer Engi-
neering from Polytechnique Montréal (Canada)
and his thesis was nominated for best thesis

award. In 2018 he held a postdoctoral fellowship at Concordia University
(Canada), where he worked on search-based software engineering for
the Internet of Things (IoT). Rubén research focuses on search-based
software engineering. He is also interested in the use of metaheuristics
to solve multidisciplinary real-world problems of interest for our society
and computer science. He has published several papers in ISI indexed
journals (such as EMSE, IEEE TSE, and Evolutionary Computation) and
conference papers in IEEE ICPC, MCDM, IEEE SANER, and ACM ES-
EC/FSE. He has co-organized the International Conference on Multiple
Criteria Decision Making, in 2013. He is on the organizing committee
of the 1st International Workshop on Software Engineering Research
& Practices for the Internet of Things (SERP4IoT), co-located with
ICSE 2019. He is also on the application committee of the Real World
Applications (RWA) track of the Genetic and Evolutionary Computation
Conference (GECCO), from 2016 up today.

Yann-Gaël Guéhéneuc is full professor at the
Department of Computer Science and Software
Engineering of Concordia University since 2017,
where he leads the Ptidej team on evaluating
and enhancing the quality of the software sys-
tems, focusing on the Internet of Things and
researching new theories, methods, and tools
to understand, evaluate, and improve the devel-
opment, release, testing, and security of such
systems. Prior, he was faculty member at Poly-
technique Montréal and Université de Montréal,

where he started as assistant professor in 2003. In 2014, he was
awarded the NSERC Research Chair Tier II on Patterns in Mixed-
language Systems. In 2013-2014, he visited KAIST, Yonsei U., and
Seoul National University, in Korea, as well as the National Institute of
Informatics, in Japan, during his sabbatical year. In 2010, he became
IEEE Senior Member. In 2009, he obtained the NSERC Research Chair
Tier II on Software Patterns and Patterns of Software. In 2003, he
received a Ph.D. in Software Engineering from University of Nantes,
France, under Professor Pierre Cointe’s supervision. His Ph.D. thesis
was funded by Object Technology International, Inc. (now IBM Ottawa
Labs.), where he worked in 1999 and 2000. In 1998, he graduated as
engineer from école des Mines of Nantes. His research interests are
program understanding and program quality, in particular through the
use and the identification of recurring patterns. He was the first to use
explanation-based constraint programming in the context of software
engineering to identify occurrences of patterns. He is interested also in
empirical software engineering; he uses eye-trackers to understand and
to develop theories about program comprehension. He has published
papers in international conferences and journals, including IEEE TSE,
Springer EMSE, ACM/IEEE ICSE, IEEE ICSME, and IEEE SANER. He
was the program co-chair and general chair of several events, including
IEEE SANER’15, APSEC’14, and IEEE ICSM’13.

