
Empirical Software Engineering (2019) manuscript No.
(will be inserted by the editor)

RePOR: Mimicking humans on refactoring tasks. Are we
there yet?

Rodrigo Morales1 · Foutse Khomh2 ·
Giuliano Antoniol2

Received: April 2019 / Accepted: –

Abstract Refactoring is a maintenance activity that aims to improve design quality
while preserving the behavior of a system. Several (semi)automated approaches have
been proposed to support developers in this maintenance activity, based on the correction
of anti-patterns, which are “poor” solutions to recurring design problems. However,
little quantitative evidence exists about the impact of automatically refactored code on
program comprehension, and in which context automated refactoring can be as effective
as manual refactoring. Leveraging RePOR, an automated refactoring approach based
on partial order reduction techniques, we performed an empirical study to investigate
whether automated refactoring code structure affects the understandability of systems
during comprehension tasks. (1) We surveyed 80 developers, asking them to identify
from a set of 20 refactoring changes if they were generated by developers or by a tool,
and to rate the refactoring changes according to their design quality; (2) we asked 30
developers to complete code comprehension tasks on 10 systems that were refactored
by either a freelancer or an automated refactoring tool. To make comparison fair, for a
subset of refactoring actions that introduce new code entities, only synthetic identifiers
were presented to practitioners. We measured developers’ performance using the NASA
task load index for their effort, the time that they spent performing the tasks, and their
percentages of correct answers. Our findings, despite current technology limitations,
show that it is reasonable to expect a refactoring tools to match developer code. Indeed,
results show that for 3 out of the 5 anti-pattern types studied, developers could not
recognize the origin of the refactoring (i.e., whether it was performed by a human or an

Rodrigo Morales
rodrigomorales2@acm.org

Foutse Khomh
foutse.khomh@polymtl.ca

Giuliano Antoniol
giulio.antoniol@polymtl.ca

1 Department of Computer Science and Software Engineering, Concordia University,
Montréal, Canada
2 Département de génie informatique et génie logiciel, École Polytechnique de Montréal,
Montréal, Canada

2 Empir Software Eng (2019)

automatic tool). We also observed that developers do not prefer human refactorings
over automated refactorings, except when refactoring Blob classes; and that there is no
statistically significant difference between the impact on code understandability of human
refactorings and automated refactorings. We conclude that automated refactorings can
be as effective as manual refactorings. However, for complex anti-patterns types like
the Blob, the perceived quality achieved by developers is slightly higher.

1 INTRODUCTION

In 1950, Alan Turing developed a test to assess a machine’s ability to display behavior
equivalent to that of a human being [38]. The evaluator (human) will be exposed to a
blind conversation with a machine and another human, and by formulating questions
(s)he will try to identify his interlocutor (i.e., whether it is the human or the machine).
If the evaluator cannot distinguish between human and machine, the latter one is said
to have passed the test. In this paper, we conduct an experiment inspired by the Turing
test. We want to check whether RePOR our automatic software refactoring tool [20] can
be as effective as human developers at least from the refactoring structure point of view.
Indeed, one major limitation of RePOR, and existing refactoring tools, is the lacking of
semantic and contextual information of identifiers. To have a fair comparison in our
study, for a subset of refactoring actions, we used synthetic identifiers also for human
refactored code and asked developers to judge the soundness of refactoring actions and
code structure. It is important to underline, RePOR evaluation goal was not to verify
if the refactoring results were deemed useful or necessary by the original developers or
if original developers would have performed the same code changes. The overarching
goal was the verify if RePOR was capable to produce refactoring actions and code
comparable to human changes quality wise.

To this aim (1) we presented practitioners with refactorings performed manually by
developers and refactorings performed by RePOR, and asked them to identify the origin
of the refactorings. We also asked them to judge the design quality of the refactorings.
Next, (2) we asked practitioners to perform a series of comprehension tasks on (both
manually and automatically) refactored code and we assessed their performance.

Context: Software systems age as the result of deviations of their original design
due to the implementation of new features [31], changes in the business logic, etc.
One way to combat software system deterioration is to perform maintenance activities
continuously; correcting poor design choices (a.k.a., anti-patterns) [5] for example
through refactorings [8]. Refactoring is a software maintenance activity that aims
to reorganize code structure without altering system’s behavior [8]. In fact, agile
methodologies like eXtreme Programming (XP) encourages developers to interleave
refactoring with their code tasks to ease software evolution. However, refactoring is a
time-consuming activity because (1) developers have to identify software components
that contain anti-patterns; (2) select the adequate refactorings to clean-up the code;
and (3) select the best order to apply the refactorings determined in the previous step.
Yet, the benefits of code refactoring to combat software aging can only be observed in
the long term.

Previous works have studied refactoring practice in academic and industrial settings,
and found that refactoring is a common practice, that the refactorings manually
performed by developers differ from those applied using tool support, and that tool
support is underused due to a lack of awareness [10, 25, 39]. In the last decade, tools

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 3

and frameworks supporting refactorings have been proposed [18, 29, 22, 23]. However,
to the best of our knowledge, little effort has been taken to evaluate the impact on
code understandability of automated-refactoring compared to manual refactoring. As a
consequence, many developers express natural reluctance about applying automated
refactoring to their code bases [15]. To accept or reject the notion that automated-
refactoring can replace manual one, we propose to submit the refactorings applied by
human and machine to the scrutiny of software developers, who will act as judges,
similar to a Turing test, to assess the quality, pertinence, and understandability of
automatically generated code structure. Our goal is to verify if RePOR challenges the
idea that automated refactorings can’t compete with refactorings performed by humans,
in terms of quality, according to human judges.

Premise: Refactoring is conjectured in the literature to improve the design quality
of systems. Despite the large number of studies on refactoring summarized in Section 2,
few studies have empirically investigated the impact of automated refactoring tools
on program comprehension. Yet, program comprehension is crucial to practitioners
responsible of performing software maintenance. Hence, a better understanding of the
conditions in which automated- is as suitable as manual-refactoring can promote the
development of more human-like tools that perform automation efficiently, reducing
maintenance costs.

Goal: We want to gather quantitative and qualitative evidences that automated-
refactoring can succeed in improving the design quality of a system at least as well as a
human being would do in similar conditions.

Study: We perform two experiments: (1) a preliminary refactoring survey (E1)
where we invited developers from Java mailing lists, and technical groups on social
networks, to differentiate refactoring code changes (that aimed to remove anti-pattern’s
instances) generated by a software tool (machine) from those generated by freelance
developers (human). For simplicity, we called this test in the consecutive "Turing test",
acknowledging the differences on implementation, as a Turing tests typically require
human interaction between human judges and machine in the form of natural language.
The freelancers that refactored the code were hired from two well-known crowdsourcing
marketplace websites1. We also asked the participants of the refactoring survey to
rank the refactorings according to their quality. (2) We conducted a series of code
comprehension experiments (E2) where we studied whether the refactoring code changes
generated by tool are more difficult to understand than those generated by developers.
In E1, we surveyed 80 developers using code from 10 different Java systems (two study
groups, manual and automated code changes). In E2, we hired 30 more additional
developers, from the two aforementioned crowdsourcing marketplaces, to perform two
comprehension tasks covering three out of the four categories of comprehension questions
identified by Sillito et al. [36]. We measured the subjects’ performance using: (1) the
NASA task load index for their effort; (2) the time that they spent performing the
tasks; and, (3) their percentages of correct answers.

Results: From the collected data, we observe that: (1) the ability of developers to
recognize automatically-generated refactoring changes depends on the types of anti-
patterns removed. For example, automatically generated refactoring changes to remove
Blob, Spaghetti Code and Lazy Class anti-patterns are hard to distinguish, while those
generated for correcting Long Parameter List and Speculative Generality anti-patterns
are not. (2) Developers do not have preference between refactoring changes generated by

1 Freelancer.com and Guru.com

4 Empir Software Eng (2019)

humans or by machine (i.e., automated tools), except for those that correct Blob classes.
(3) There is no statistically significant difference between the impact of automated- and
manual- refactorings on program comprehension.

Relevance: Understanding the context in which automated-refactoring is beneficial
to developers and the cases where a human supervision is required is crucial from the
points of view of both researchers and practitioners. For researchers, our results debunk
the myth that automated-refactoring is not reliable and-or cannot be safely performed
without human intervention. At the same time, they also highlight the need to develop
approaches able to create identifiers that are semantically and contextual dependent.
For practitioners, our results build confidence in the adoption of automated-refactoring
tools. We hope that our results serve as inspiration to both groups, and help them
develop new tools and approaches to support software maintenance and evolution.

Organization: Section 2 relates our study with previous works. Section 3 presents
the results of a preliminary study to assess the quality of the automated refactoring
changes proposed by our tool. Section 4 describes the design of our empirical study.
Section 5 presents the study results, while Section 6 discuss further the obtained results
and their implications. Section 7 discusses threats to validity. Finally, Section 8 concludes
the paper and discusses avenues for future work.

2 Related Work

Fowler [8] popularized the term refactoring, by defining some heuristics to improve
the design of existing code while preserving its functionality. Brown [5] introduced the
notion of anti-patterns as poor-design choices that hinders code evolution. Opdyke [28]
is the first to formulate a set of pre- and post-conditions to automatize the refactoring
of object-oriented systems. Mens et al. [17] published an extensive overview of existing
research work of software refactoring, and there are still new works published every
year.

In this section, we summarize some of the works related to refactoring and its impact
on design quality and code comprehension, and relevant studies that compared manual
and automatic refactoring.

2.1 Impact of Refactoring anti-patterns on design quality and code comprehension

Deligiannis et al. [7] proposed the first quantitative study of the impact of anti-patterns
on software development and refactoring. Through a controlled experiment involving
20 students and two systems, they found that Blob classes hinder the evolution of
software design and the subject’s use of inheritance. This work did not evaluate the
understandability of the code, neither the subjects’ ability to successfully perform
comprehension tasks on the systems studied.

Stroulia and Kapoor [41] investigated the impact of refactoring on metrics associated
to size and coupling and found that those metrics improved after refactoring.

In another academic setting, Du Bois et al. [4] found that the refactoring of God
Classes into a number of collaborating classes can improve code understandability. The
participants were asked to perform simple refactoring to decompose God classes. They
found that participants exhibited less difficulties to understand the refactored code.

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 5

Murphy et al. [26] performed an empirical study on refactoring practice and the
use of refactoring tool support. By analyzing the commit history of more than 39, 000
Eclipse developers, with their interaction traces (using Mylyn plug-in), they found that:
(1) refactoring tooling support is rarely used; (2) that 40% of refactorings assisted by
tools occur on batch; (3) developers prefer interleaving refactoring with other code
activities; (4) the kind of refactorings performed with tools differs from the kind of
refactorings performed manually. However, this work did not study the impact on
code comprehension of refactorings performed by machine and human, and what is
the take of developers on automatically refactored code. These questions that were left
unanswered served as motivation to perform our study.

Abbes et al. [1] performed an empirical study to determine the impact of Blob
and Spaghetti Code anti-patterns on program comprehension. They performed three
experiments, each of them with 24 subjects and three different Java systems. They
measured the subjects performance using three metrics: NASA TLX, tasks’ completion
times, and percentage of correct answers. They found that the occurrence of one single
instance of anti-pattern does not impact significantly the comprehensibility of the code,
while the combination of two anti-patterns does impact comprehension negatively.

Moser et al. [24] analyzed the impact of refactoring on productivity in agile envi-
ronments. They measured developer’s productivity by dividing lines of code and effort
(measured in time). They reported a statistically significant increase in productivity
after refactoring along with some improvements in complexity and coupling.

Kim et al. [14] performed a case study in an industrial setting at Microsoft on
the benefits of refactoring. They found that developers perceive manual refactoring as
expensive and sometimes risky, and that refactoring changes loosely match the literature
definition of semantics-preserving code transformations. They also reported that the top
5 percent of preferentially refactored modules in Windows 7 reported higher reduction
in the number of inter-module dependencies and several complexity metrics, but as a
consequence larger increase in module’s size compared to the remaining 95% of the
refactored modules.

All these studies corroborate the idea that refactoring anti-patterns improve code
design quality in several dimensions. However, all of them focused on manual refactoring.

2.2 Manual compared to automatic refactoring studies

Negara et al. [27] performed an empirical study to compare semi-automatic (IDE
tool-assisted) refactoring and manual refactoring operations of 23 participants from
the academy and industry in a controlled experiment. They reported that developers
performed 11% more refactorings manually than using tool support; less experienced
developers use less tool support than experienced ones; that developers perform large
refactoring changes (e.g., extract method) with and without tool support, and that the
size of a refactoring is not a decisive factor.

Szőke et al. [37] performed a case study with a R&D company to study the effects
of semi-automatic refactoring on code maintainability. They corroborate the statement
by Murphy et al. [26] that the quality of machine-generated code might differ from
manual refactoring when developers are prompted to provide input to the tool to
decide between a list of refactorings, and when they blindly select the default machine
propositions. They conclude that companies could achieve a considerable increment
of code maintainability by only applying automatic refactorings. Note that they did

6 Empir Software Eng (2019)

not compare an equal number of manual and automatic refactorings, but commanded
developers to perform refactoring manually and then developed a tool to reproduce
manual refactoring behavior followed by developers. The level of automation of their
proposed tool is not disclosed.

Note that none of the studies in this category compared the understandability of
manual and automatic refactoring on the same source code, and–or developers’ perceived
quality of the refactored code.

2.3 Evaluation of Refactoring process

Kataoka et al. [13] proposed an approach to measure the effect of refactorings on the
maintainability of the code, using coupling metrics. Although, they find that coupling
metrics can be useful to asses the degree of maintainability improvement of a refactoring
change, they also recognized that the type of refactorings that can be evaluated using
coupling metrics is limited,

In a recent preliminary work by Arima et al. [2], a novel technique is proposed to
assess the naturalness of refactored code automatically, using probabilistic language
models. Code naturalness is a numerical value that measures how natural a given
word sequence is for the model. As oracle they used a curated dataset of commits
belonging to JUnit, where the refactorings were clearly identified by the authors of
the commits. Their approach achieved 68% of accuracy on 28 refactoring operations.
This study does not evaluate the impact of refactoring, but tried to propose a new
metric to quantitatively measure how well does a refactoring matches the text content
of a software system. In the future, this technique could serve for further comparisons
of automatically and manually refactored code in a quantitative way, and to improve
existing automatic refactoring tools.

3 Preliminary Study

In this section we performed a preliminary study to assess the quality of refactorings
suggested by RePOR. It is about recognizing if a refactoring code change applied
to remove an instance of the aforementioned anti-pattern types was performed by a
developer, or an automatic tool. We also asked participants to rank the refactoring
code changes according to their perceived quality.

3.1 Preliminary Research Questions

Our preliminary research questions stem from our goal of checking whether or not
automated tools can do as good a job as manual developers. Looking at quality and
checking whether people could easily distinguish them are just two indicators that
we used to achieve that goal. We want to check if the two types of refactorings (i.e.,
refactoring made by humans and refactorings made by a tool) are significantly different
structurally. Our reasoning is that if the two types of refactorings are not too different
structurally, then automated tools are likely to be adopted more easily by practitioners.
Although, there exist other alternative approaches, to assessing quality and checking if
refactorings can be easily differentiated based on their origin (i.e., tools vs humans),

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 7

we believe that our analysis can provide key information on whether or not developer
perceive refactoring performed by humans and tools to be equivalent.

We state the preliminary questions as follows.
PQ1: Can developers tell the difference between automated and manual refactorings?
PQ2: Is there any difference between the perceived quality of automated and manual
refactoring?

3.2 Hypotheses

For PQ1, we test the following null hypothesis when subjects review refactored code
changes.

H0identify: Developers correctly differentiate the refactoring changes generated by an
automated tool from the ones by another developer.

For PQ2, to examine differences in the perceived quality of the refactoring changes,
we test the following null hypothesis.

H0rank: Developers prefer manual refactoring over automated refactoring.

3.3 Objects

The selection criteria of the anti-pattern instances refactored in this study is based
on the detection results of our own tool for detecting and refactoring anti-patterns
RePOR [20] applied to the SF110 corpus [9]. SF110 is a representative sample of 110 Java
projects from SourceForge Website2, which is a popular open source software repository,
with more than 500,000 projects and with more than 33 million registered users. The
projects in SF110 corpus are packed into a common build infrastructure, including
developers tests suites and automated-generated test suites previously validated by
the authors of the corpus. We explicitly asked freelancers that performed the manual
refactoring to run developer’s unit tests, and in case the refactoring(s) affected the
execution of the unit tests, due to change in the code structure, we asked them to
update the corresponding unit tests, as developers will normally do in such cases. We
followed the same procedure for automated refactorings. This help us to validate, to
some extent, that regression is not introduced in the code after refactoring. Once we
collected the results of the anti-patterns detection, the first author of this work and
a Master’s student in our research lab selected two instances, for each anti-pattern
type studied, that were deemed representative examples of anti-patterns based on the
works of Brown et al. and Fowler et al. [5, 8]. In case of disagreement, we came to
the second author of this work for solving differences, and followed a conservative
approach of discarding instances where we could not reach consensus. We are also
interested to know if different refactoring types affect the perception of developers or
not. However, study only one single instance of each type would be insufficient as one
instance could be intrinsically easier or more difficult to refactor. Hence, we opted for
selecting one easy and one hard instance of each anti-pattern type. In total we study
10 Java systems (two for each anti-pattern type) from different domains and sizes. We
select the anti-pattern examples from different systems for both treatments (automated

2 https://sourceforge.net/

8 Empir Software Eng (2019)

Table 1: List of studied Anti-patterns types and the refactorings used to correct them.
Name Description Refactoring(s) strategy
Blob (BL) [5] A large class that absorbs most of the

functionality of the system with very low
cohesion between its constituents. In ad-
dition, Blob Classes are surrounded by
classes who serve mainly as data holders,
and that does not implement any function-
ality (a.k.a., data classes).

Move Method (MM). Move the
methods that does not seem to fit
in the Blob class abstraction to
more appropriate classes [33]. An-
other strategy, when there are not
suitable classes to move methods,
is the creation of new classes with
methods and attributes that have
high cohesion, and that are se-
mantically related (a.k.a., extract
class refactoring).

Lazy Class (LC) [8] Small classes with low complexity that do
not justify their existence in the system.

Inline Class (IC). Move the at-
tributes and methods of the LC to
another class in the system.

Long Parameter
List (LP) [8]

A class with one or more methods having
a long list of parameters, specially when
two or more methods are sharing a long
list of parameters that are semantically con-
nected.

Introduce Parameter Object
(IPO). Extract a new class with
the long list of parameters and
replace the method signature by
a reference to the new object
created. Then access to this pa-
rameters through the parameter
object.

Spaghetti Code
(SC) [5]

A class without structure that declares long
methods without parameters.

Replace Method With method Ob-
ject (RMWO). Extract long meth-
ods into new classes so that all lo-
cal variables become attributes on
that object.

Speculative Gener-
ality (SG) [8]

There is an abstract class created to an-
ticipate further features, but it is only ex-
tended by one class adding extra complex-
ity to the design.

Collapse Hierarchy (CH). Move
the attributes and methods of the
child class to the parent and re-
move the abstract modifier.

and manual), to control for possible learning effect on the respondents, who might get
familiar with a system’s code design.

The anti-patterns types studied are briefly introduced in Table 1. We provide the
name, a brief description and the refactoring strategies used to remove them according
to the literature of anti-patterns [8, 5].

In Table 2 we present information about the systems studied. The ID column
contains the ID assigned by SF110 (from now on, we use it to reference the system) to
a system, anti-pattern type (Ap. Type), package where the source class is located, and
the source class containing the anti-pattern instance.

In Table 3, we present the metrics used to assess the difficulty of anti-pattern
instances studied. The last tree columns measured the normalized entropy of refactoring
changes applied to those anti-patterns performed by tool and developer respectively. We
decide on the level of difficulty of the instances based on (1) expert judgment and (2)
code metrics. (1) We assess how difficult it would be to refactor the anti-pattern instance
in question if we had to do it ourselves. (2) We use code metrics to validate our expert
judgment. For example, in the case of Blob class, we evaluate the effort of manually
refactoring the class by moving methods to related classes, or extracting new ones.
Then, we took into account lines of code, and number of data classes associated to Blob
to determine which instance required more effort. With respect to Collapse Hierarchy
and Lazy Class, we measure the number of incoming invocations (NII), as we suggest
that removing these classes requires to update all method calls to the inlined classes,
which in turn requires extra effort when values of NII are large. For Spaghetti Code,
we measured McCabe Complexity (CC). For Long-parameter list classes, we consider

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 9

Table 2: List of systems from where we extract the anti-pattern’s instances studied
ID System Description Ap. Type Package Source class

110 FireBird A relational
database manager

Blob org.firebirdsql.gds
.impl.jni

isc_stmt_handle
_impl

83 Xbus It is a central
Enterprise Appli-
cation Integration
(EAI)

Blob net.sf.xbus.
technical.mail

POP3XML
Receiver

52 Lagoon A XML-based
framework for
web site mainte-
nance

Collapse hierar-
chy

nu.staldal.laggon
.core

FileRead

86 Advanced T-
Robots

Fighting robots
Arena

Collapse hierar-
chy

net.virtualinfinity
.atrobots.arena

LinearDamage
Function

47 dvd-homevideo Application to
burn DVDs

Lazy class default package SaveStackTrace

101 SAP NetWeaver Server Adapter
for Eclipse

Lazy class com.sap.netweaver
.porta.mon CommandFactory

103 Sweet Home 3D An interior design
application

Long-parameter
List

com.eteks.
sweethome3d.j3d

HomePieceOf
Furniture3D

104 Vuze BitTorrent Client Long-parameter
List

org.gudy.azureus2.
core3.tracker.
client.impl.bt

TRTrackerBT
AnnouncerImpl

81 JavAthena Online role play-
ing game

Spaghetti Code org.javathena.core
.data

ROCharacter

70 EchoDep Digital preserva-
tion application

Spaghetti Code
edu.uiuc.ndiipp.
hubandspoke.
workflow

WorkflowManager

the number of parameters of methods in a class. We did not use fixed thresholds for
discriminating easy from hard instances as these values are relative to the systems
in question. Instead, we leverage the information obtained by our appreciation of the
required effort, and code metrics, and based on that we defined the difficulty. To ensure
the refactorings performed by developers and the tool were comparable in terms of effort,
we measured the normalized static entropy (N.E.) [11] to quantify the effort required
to refactor an anti-pattern based on the number of changes made by a developer/tool
respectively (see columns N.E.D and N.E.T.). We observe that the refactoring effort, as
measured with N.E., is very similar between machine and human treatments for most
cases.

Finally, we report the use of synthetic identifiers for new code entities introduced
after refactoring (S.N.). This column can take any of these values: A (all refactoring
examples), H (just human example, in case the tool did not create any new entity, like
in move method refactoring), and N (none of the examples).

Our benchmark of refactoring changes is comprised of two sets: 10 high-level refac-
torings applied automatically by our tool (M); and 10 high-level refactorings applied
by real developers (D). A high-level refactoring is a refactoring composed of more than
one low-level refactoring [28]. For example: Collapse Hierarchy, which is a high-level
refactoring, is composed of the following low-level refactorings: one or more pull-up
method/attributes; delete class; remove abstract modifier; update class references.

For set M, we refactored the selected anti-patterns’ instances, using the Eclipse
plug-in implementation of RePOR3. For set D, we hired five experienced Java developer
freelancers from two well-known marketplace websites (Guru.com and Freelancers.com).

3 https://github.com/moar82/RefGen

10 Empir Software Eng (2019)

Table 3: List of anti-pattern instances studied, where LOC: lines of code, NII: number of
incoming invocations, CC: McCabe complexity, N.E.T: Normalized entropy for automated
refactorings, N.E.D: Normalized entropy for human refactorings, and S.N.: Use of synthetic
names.
ID Ap. Type LOC NII CC DataClass NoParam Difficulty N.E.T. N.E.D. S.N.
110 Blob 27 1 Easy 0.94 0.94 H
83 Blob 595 2 Hard 0.89 0.93 H
52 Collapse hier-

archy
0 Easy 0.97 0.97 N

86 Collapse hier-
archy

3 Hard 0.92 0.92 N

47 Lazy class 14 Hard 0.95 0.94 N
101 Lazy class 1 Easy 0.88 0.89 N
103 Long-

parameter
List

8 Hard 0.86 0.89 A

104 Long-
parameter
List

5 Easy 0.85 0.88 A

81 Spaghetti
Code

80 Easy 0.44 0.99 A

70 Spaghetti
Code

93 Hard 0.59 0.62 A

We provide them with the definition of the studied anti-patterns and the Fowler’s
catalog of refactorings [8], to allow them to select the most adequate refactorings,
according to their experience. One can argue that it would be more natural to collect
refactorings from the original developers of the studied systems, as they are familiar
with the code. However, it would be hard to first locate, and then convince the original
developers from open-source systems, as most of contributors of open-source projects are
volunteers, without any contractual relationship with the project. Instead, we assume an
hypothetical scenario where a new developer is integrating to a project, and is assigned
the task of refactoring the existing code.

Each freelancer performed two refactorings, and they were excluded from experiment
1 and 2 to avoid introducing bias in our results.

3.4 Subjects

We invited participants to participate in preliminary study E1 through Java developers’
mailing lists, and through the social network of the authors of this paper. In total we
received 87 answers from which we filtered out responses that were incomplete, and
those where participants who did not provide justifications for their choices. We ended
up with 80 responses for this study. All participants were volunteers and could withdraw
at any time from the study, for any reason. From the 80 responses, 57 participants
declared software development as their main occupation, 7 participants declared their
main occupation to be research, 6 work as software architects, 4 scrum masters, 4
students and 2 fall in the Other category. Among these 80 participants, 37 declared to
work on both open-source and proprietary systems, 34 declared to work on proprietary
systems and only 9 on open-source. Fifty percent (40 out of 80) of participants declared
to have more than 5 years of experience as developers. Eighteen participants have more
than 2 and up to 5 years of experience, 14 participants have between 1 to 2 years
of experience, and 8 participants have less than one year of experience. We ran the

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 11

experiment from October 27th 2017 to January 29th 2018. Since, we invited participants
through mailing lists and social networks, it is hard to estimate the response rate.

3.5 Independent variable

The independent variable for the E1 is related to who refactored an anti-pattern instance,
i.e., its origin, and it is a binary variable stating whether the refactoring was performed
by an automatic tool or by a developer.

3.6 Dependent Variables

The first dependent variable is a binary variable stating whether or not the participant
correctly identified the origin of the refactoring change. The second dependent variable
is a categorical variable capturing the perceived quality of the refactoring solution
proposed, on a scale of 1 to 5, where 1 is for “Poor” quality, and 5 is for “Outstanding”
quality.

3.7 Questions

For E1, we use an online survey system (Jotform4) where we present the refactoring
change, the online link to repository of the system that contained the anti-pattern’s
instance, and the type of anti-pattern. To summarize the refactoring changes applied to
the studied systems, we generate for each anti-pattern’s instance refactored, a patch
file using the diff command from the control version system (Git). A patch file contains
the description of the changes made using diff notation, which is a unified format that
developers and control version systems can understand. The link to the repository of
the systems studied provide respondents with a complete reference of the refactoring
changes applied. We also provide a link to the repository containing the original source
code; for example, if they want to study deeper the impact of the refactorings applied,
they could clone the repository and apply the patch. In Listing 1 we show a fragment
of a refactoring change from our online survey.

Listing 1: Fragment of a refactoring change from the online survey.
1 diff −−git a/src/main/java/org/character/data/TXTCharacter.java

b/src/main/java/org/character/data/TXTCharacter.java
2 index df86a66..964b164 100644
3 −−− a/src/main/java/org/character/data/TXTCharacter.java
4 +++ b/src/main/java/org/character/data/TXTCharacter.java
5 @@ −6,6 +6,7 @@ import java.io.FileReader;
6 import java.io.IOException;
7
8 import org.character.data.config.CharConfig;
9 +import org.javathena.core.data.Clazz007382383094620344;

10 import org.javathena.core.data.Friend;
11 import org.javathena.core.data.Hotkey;
12 import org.javathena.core.data.IndexedFastMap;
13 @@ −14,7 +15,6 @@ import org.javathena.core.data.PersistenteData;
14 import org.javathena.core.data.Point;
15 import org.javathena.core.data.ROCharacter;

4 http:www.jotform.com

12 Empir Software Eng (2019)

16 import org.javathena.core.data.Skill ;
17 −import org.javathena.core.data.ROCharacter.JOB;
18 import org.javathena.core.utiles .Functions;
19
20 public class TXTCharacter implements PersistenteData<IndexedFastMap<Integer,

ROCharacter>>
21 @@ −139,7 +139,7 @@ public class TXTCharacter implements

PersistenteData<IndexedFastMap<Integer, ROC
22 currChar.setName (mainCharSL[2]);
23
24 tmpSplit = mainCharSL[3].split(",");
25 − currChar.setClass_(JOB.parseFromValue (Short.parseShort (tmpSplit[0])));
26 + currChar.setClass_(Clazz007382383094620344.parseFromValue (Short.parseShort

(tmpSplit[0])));
27 currChar.setBase_level (Integer .parseInt (tmpSplit[0])) ;
28 currChar.setJob_level (Integer .parseInt (tmpSplit[0])) ;

In diff notation, a patch does not show the complete file, but only shows the code
fragments that were modified. Those code fragments are called chunk. The lines starting
with "+" indicate new lines added, and "-" lines removed. "@@" is the chunk header,
where Git indicates which lines were affected. For example, line 5 in Listing 1 indicates
that from file A (original source code represented by a "-"), 6 lines are extracted starting
from line 6. From file B (refactored source code represented by a "+"), 7 lines are
displayed, starting also from line 6 . The text after "@@" serves to clarify the context.
Git tries to display a method name or other contextual information of where this chunk
was taken from in the file.

We asked developers to answer whether the refactoring change was generated by a
developer or a software tool. We also had an option “Unknown” that participants could
select if they were unable to tell whether the refactoring change was performed by a
developer or generated by a tool. To control for possible randomness in the answers, we
asked participants to provide their level of confidence in their answers (on a scale of 1
to 5), and a brief explanation to support each answer. Since the quality of developers’
solutions may be different from that of our automated approach, we asked participants
to rate the quality of the refactoring changes (according to their perception of quality)
and mark their preferred solutions. We also asked them to provide any additional
comment about the refactoring change’s quality, if they considered it appropriate.

3.8 Anonymization of new code lexicon

Identifier names and comments (code lexicon), when thoughtfully assigned, can support
developers to better understand a software system. However, as already stated, current
existing automatic refactoring tools and frameworks are not equipped with mechanisms
allowing them to generate a human-like name for a new class, or a new method
introduced when refactoring. On the other hand, developers generate names that reflect
the roles of the entities and–or follow projects guidelines. To ensure a fair experiment
using the refactoring changes generated by humans and by RePOR, we decided to
post-process the changes by removing any code comment, and renaming any new class
or method added to the code base with an artificial name (for both origins), to avoid
providing any hint that can lead the human evaluators to discover the origin of the
changes. Note that renaming new classes and methods was only necessary for the
following refactoring types: Introduce parameter-object, Replace method with object,
and Extract class, while Inline Class, Collapse Hierarchy, and Move method did not
require it.

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 13

Table 4: E1 Experimental Design
Question Group 1 Group 2 Group 3 Group 4
1 SC-83-M BL-83-H BL-110_M LP-103-M
2 CH-86-H SC-70-H SC-70-M SC-81-H
3 LC-101-M CH-52-M LP-104-H LC-101-H
4 BL-83-M LP-104-M LC-47-0 BL-110-H
5 LP-103-H LC-47-H CH-52-H CH-86-M

3.9 Design

For E1, we divided the 20 refactoring patches (10 changes for each origin) into 4 groups.
So each respondent will answer a survey containing 5 refactoring changes (each change
corresponds to a different system) for removing 5 different types of anti-patterns. We
also interleave the origin of the changes (machine, human) and the level of difficulty
(easy and hard) in a way that any group has more than 3 patches from the same origin
or level of difficulty. As previously stated, the level of difficulty is assessed using well
known object oriented metrics. To assess feasibility, that time given to respond the
survey was enough, and anticipate adverse events, we performed a pilot study with two
Post-doctoral fellows and one Ph.D. student from our lab, with more than 5 years of
experience developing with Java. The pilot study also helped us to refine the questions,
and improve the visual design of our survey in terms of readability. Note that none of
the people that participated in the pilot study took part to the final study.

In addition to asking respondents to identify the origin of the patch, we also asked
them to justify their response in a free-text box, and to indicate how confident they
felt when answering the questions, using a scale from 1 to 5, to control for possible
randomness in the answers.

We present our design in Table 4. First column is the number of question and the
rest of the columns corresponds to the different groups. Each cell contains the type
of anti-pattern, using the abbreviations of Table 1, the ID of the system, and a letter
indicating the origin of the patch (H:human, M: Machine).

3.10 Procedure

All the data collected is anonymous. The subjects could drop the experiment at any
time, for any reason and without penalty of any kind. For the freelancers hired for
refactoring the systems, and the second group hired for answering the comprehension
tasks, we set milestones which clearly specify work deliverables, so we pay for each task
completed. All the freelancers hired for refactoring the anti-patterns studied passed an
interview, where they stated their experience as Java developers, and refactoring, and
correcting anti-patterns. In addition to the anti-patterns definitions and refactoring
strategies, we provided them with references from the literature and web sites related
to refactoring, but we did not persuade them to blindly follow any of these materials,
but encouraged them to base their actions on their work experience and own reasoning.

We first briefly introduced the description of the anti-patterns using Table 1. Next,
we asked them, to not base their judgment on code lexicon, and to accept that they
will only focus on code structure and its quality, and not on indentations, naming
conventions, space, etc.

14 Empir Software Eng (2019)

3.11 Analysis method

In PQ1, to attempt rejecting H0identify:, we test whether the proportion of refactoring
changes correctly identified (or not) by participants, significantly varies between changes
generated by human or by machine. We use Fisher’s exact test [35], which checks whether
a proportion vary between two samples. We also compute the odds ratio (OR) [35] that
indicates the likelihood for an event to occur. The odds ratio is defined as the ratio of
the odds p of an event occurring in one sample, i.e., the odds that changes generated
by machine were correctly identified, to the odds q of the same event occurring in the
other sample, i.e., the odds that changes generated by humans were correctly identified:
OR = p/(1−p)

q/(1−q)
. An odds ratio of 1 indicates that the event is equally likely in both

samples. An OR greater than 1 indicates that the event is more likely in the first
sample (machine), while an OR less than 1 indicates that it is more likely in the second
sample (human). In PQ2, we use a (non-parametric) Mann-Whitney test to compare
the perceived quality (i.e., the rates assigned by participants) of refactoring changes
generated by machine with the rates of refactoring changes generated by humans.
Non-parametric tests do not require any assumption on the underlying distributions.
Other than testing the hypothesis, it is of practical interest to estimate the magnitude of
the difference between the rates assigned to changes generated by machine and humans.
Therefore, we compute the non-parametric effect size measure Cliff’s δ (ES) [6], which
indicates the magnitude of the effect of the treatment on the dependent variable. The
effect size is considered negligible if < 0.147, small if between 0.147 and 0.33, medium
if between 0.33 and 0.474, and large if > 0.474 [32].

3.12 Preliminary Results

3.12.1 PQ1: Can developers tell the difference between automated and manual
refactorings?

In Table 5 we summarize the results of E1. In the first column we use the following
abbreviations: all for all the anti-pattern types studied, or the abbreviation of each
type; columns 2 to 4 are the percentage of correct, wrong, or unknown answers; columns
5 to 7 are the corresponding percentages for machine changes (m), while columns 8 to
10 are the corresponding percentages for human changes (h).

When considering all anti-pattern types, we observe that the proportion of correct
and wrong answers are the same (45%). In the remaining 10% of cases, respondents were
not able to discern the origin of the changes, i.e., I do not know answer was selected,
first row, columns 2-3. With respect to the anti-pattern’s type fixed, Long-parameter
and Spaghetti code have the highest percentage of machine changes correctly identified
(more than 70%), and therefore we consider that they could not pass by manual changes.
Conversely, Speculative generality, Blob and lazy class were correctly identified in less
than 50% of cases, indicating that to some extent they mimic human behavior on
refactoring tasks.

If we study the percentage of correct answers by refactoring origin, we observe that
respondents found it more difficult to identify human patches (38%), whereas machine
patches were little easier to identify (52%). This trend holds for all anti-patterns studied,
except for Speculative Generality (SG), where the percentage of correctly identified
machine changes (23%) is lower than the correctly identified human ones (55%). This

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 15

Table 5: E1 RQ1 overall results
ap-type correct wrong unknown correct-m wrong-m unknown-m correct-h wrong-h unknown-h
all 45.00% 45.00% 10.00% 52.00% 38.50% 9.50% 38.00% 45.50% 16.50%
bl 30.00% 61.25% 8.75% 37.50% 57.50% 5.00% 22.50% 65.00% 12.50%
lc 47.50% 45.00% 7.50% 47.50% 47.50% 5.00% 35.00% 42.50% 22.50%
lp 57.50% 33.75% 8.75% 80.00% 12.50% 7.50% 35.00% 55.00% 10.00%
sc 50.00% 45.00% 5.00% 72.50% 22.50% 5.00% 42.50% 37.50% 20.00%
sg 45.00% 45.00% 10.00% 22.50% 52.50% 25.00% 55.00% 27.50% 17.50%

Table 6: E1 RQ1 results by respondent’s expertise
Expertise (years) Total Correct Correct % Correct-h Correct-m
>5 200 96 48.00% 40 56
>2 to 5 90 32 36.00% 12 20
1 to 2 70 36 51.00% 20 16
<1 40 16 40.00% 4 12

result is surprising since the refactoring type applied for removing the two different
SG instances, which is Collapse Hierarchy (CH), was applied for both treatments. To
find a plausible explanation for this result, we manually examined the cases where
respondents failed to distinguish refactoring changes corresponding to SG anti-pattern
type, and observed that they belong to the easy instance, which corresponds to 14
different respondents who failed to identify the origin of the changes generated by the
automatic tool to remove SG anti-pattern type. In general, human judges doubted the
ability of software tools to perform this refactoring type. For example, one responded
commented: “The abstract class is useless (the change is better). I don’t think a tool
can detect it.”.

To control for some confounding factors, like development experience, or confidence
when answering the questionnaire, we cluster the results based on developer’s experience
(Table 6) and developer’s confidence for each patch reviewed (Table 7).

We observed that the largest number of respondents declared to have more than
five years of experience as Java developers, while the smallest group declared to have
less than one year. Contrary to what one would expect, the group with more correct
answers (51%) was the group with one to two years of experience, followed closely by
the group with more than five years of experience (48%), indicating that the experience
factor was not decisive to correctly identify the origin of the refactoring changes. The
same situation occurs with the other groups, as the group with less than one year of
experience correctly identified more refactoring changes than the group with more than
two, up to five years of experience. We suggest that perhaps developers surveyed with
less experience, are more skilled in Java and more versed in object-oriented design, and
beside their little experience, they have worked on more challenging projects than their
more experienced peers, or they simply have more experience on code refactoring.

Concerning the number of correctly identified refactoring changes by origin (columns
5-6, Table 6), we corroborate what we observed in the overall results, respondents had
more difficulty to identify refactoring changes generated by human than by machine.
With one remarkable exception: developers with one up to two years of experience, who
correctly identified more refactoring changes applied by human than by machine.

With respect to confidence level declared per question, we observed that respondents
felt confident enough, as in 60% of the questions they selected a confidence level between

16 Empir Software Eng (2019)

Table 7: E1 RQ1 results by respondent’s confidence per question
Confidence Total Correct Correct % Correct-h Correct-m
5 109 48 44.04% 24 24
4 142 69 48.59% 29 40
3 105 46 43.81% 18 28
2 30 12 40.00% 3 9
1 14 5 35.71% 2 3

4 and 5. We also observed that the largest proportion of correct answers (48.59%)
corresponds to the confidence level of 4, followed by the ones identified with a confidence
level of 5 (44.04%); the next group are respondents with a confidence level of 3 (43.81%);
refactoring changes identified with a confidence level of 2, reached 40% of correctly
identified patches; the last group, the one with the lowest level of confidence, achieved
the smallest proportion of correct answers (35.71%), which makes sense.

If we analyze results based on the origin of the refactoring changes (columns 5-6),
we observe that the machine’s ones are more easily identified than the human ones,
with one exception: those changes identified with a confidence level of 5 have the same
proportion of correct answers. Contrary to the analysis based on respondents’ expertise,
the analysis based on respondents’ level of confidence is more linear, as higher level of
confidence led to higher number of correctly identified refactoring changes, in almost
sequential order (the only exception being between levels 4 and 5, where respondents
with confidence level of 4 achieved better results than those with confidence level of 5).
Respondents that selected confidence level of 4 may have been more modest than those
who selected 5. Still both intervals are on the top of the confidence scale.

In Table 8 we present the contingency table for the number of correctly/incorrectly
identified refactoring changes with respect to their origin: machine (m), human (h) and
the results of the Fisher’s exact test and odds ratio OR between changes generated
by human or machine. The contingency table shows the frequency distribution of the
refactoring changes identified by the respondents with respect to the refactoring change’s
origin. Fisher’s exact test indicates whether a significant difference of proportions
between automatically- and manually-generated refactoring changes exists. Odds ratio
indicates the probability of a respondent to correctly identify a change according to the
origin of the refactoring change analyzed.

The first column of Table 8 corresponds to the anti-pattern’s type; columns 3 to
4 correspond to the number of correctly/incorrectly identified changes by origin; and
columns 5 to 6 reports the result of Fisher’s exact test and ORs when testing H0identify.
In the first row, when aggregating all refactoring types together, the p− value of the
Fisher’s exact test is statistically significant, with an OR greater than one, indicating
that changes generated by machine were easier to identify than the ones generated by
humans. Aggregating all anti-pattern types might not be very descriptive, specially
considering that the refactoring types studied cover a wide range of design problems
(coupling, lack of cohesion, design size, readability, etc).

To make a more precise analysis of the results, we expand our analysis to consider
the refactorings of each anti-pattern type separately (rows 2 to 6, Table 8). We observe
that only in two anti-pattern types, the results are statistically significant. Refactoring
changes to remove long-parameter list have higher probability to be correctly identified
by respondents when they are automatically generated (7 times more according to OR).
Conversely, refactoring changes to correct Speculative Generality classes are more likely

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 17

Table 8: Contingency table and Fisher’s exact test results for developers’ survey on refactoring
changes

ap_type correct-m wrong-m correct-h wrong-h p− value OR
all 104 96 76 124 <0.01 1.77
bl 15 25 9 31 0.22 2.05
lc 19 21 14 26 0.36 1.67
lp 32 8 14 26 <0.01 7.22
sc 29 11 17 23 0.01 3.51
sg 9 31 22 18 <0.01 0.24

to be correctly identified when they are refactored manually (OR < 1). Based on some
respondent’s comments, we suggest that the results obtained for Long-parameter list
reflect respondent’s view that the refactorings performed did not improve the quality
of the systems. Because of this perception of poor quality, the respondents may have
considered that such refactorings could have only been produced by an automatic
tool. This results suggests that the human judges considered the introduce parameter-
object applied by both, developers and machine, artificial. For example, Table 5 shows
that the largest proportion of correct answers for an anti-pattern type correspond
to long-parameter list with 80% of correct answers; conversely, 55% of respondents
incorrectly chose machine origin when the origin was human; the remaining 10% of
respondents declared themselves unable to decide (they did not know). For Speculative
Generality anti-pattern, respondents tend to attribute the refactoring changes proposed
for removing this type to humans, and some of them even mentioned that the refactoring
proposed was too complex to be generated by an automatic tool. Note that existing
popular Java IDEs like Eclipse and IntelliJ IDEA provide refactoring support for
Long-parameter list (introduce-parameter object refactoring) but not for Speculative
Generality (e.g., Collapse hierarchy refactoring). Hence, they could have been misled by
the wide availability of automatic refactoring tool support for refactoring long-parameter
list anti-pattern when making their choices.

For the remaining anti-patterns types, the p− values are > 0.01. Hence, we cannot
reject H0identify for those types of anti-patterns. We therefore conclude that developers
cannot differentiate between refactorings changes made by human and machine for
those types of anti-patterns.�

�

�

�

In general, automatically generated refactorings and refactoring changes made
by humans were equally difficult to identify. In 10% of cases, developers
couldn’t even make a decision and opted for the “I do not know” option. Based
on anti-pattern types, the results vary depending on the type. Refactorings
generated for removing Long-parameter list and Speculative Generality anti-
patterns failed the Turing test, whereas Blob, Lazy class and Spaghetti Code
anti-patterns passed it.

3.12.2 PQ2: Is there any difference between the perceived quality of automated and
manual refactoring?

In this research question, we examine developers’ perception of automated refactorings.
We want to know whether they have the same appreciation for automatically generated

18 Empir Software Eng (2019)

Table 9: E1, RQ2 Median rates by anti-patterns’ type
Antipattern Type rate_machine rate_human p− value ES
all 3/5 3/5 0.02 negligible
bl 3/5 4/5 <0.01 medium
lc 3/5 4/5 0.13 small
lp 3/5 3/5 0.65 negligible
sc 3/5 3.5/5 0.10 small
sg 4/5 3/5 0.38 negligible

Machine Human

1
2

3
4

5

R
es

po
nd

en
t r

at
es

 o
f r

ef
ac

to
rin

g
pa

tc
he

s

All types

●●●●●

Machine Human

1
2

3
4

5

R
es

po
nd

en
t r

at
es

 o
f r

ef
ac

to
rin

g
pa

tc
he

s

bl

●●●●●●

Machine Human
1

2
3

4
5

R
es

po
nd

en
t r

at
es

 o
f r

ef
ac

to
rin

g
pa

tc
he

s

lc

Machine Human

1
2

3
4

5

R
es

po
nd

en
t r

at
es

 o
f r

ef
ac

to
rin

g
pa

tc
he

s

lp

Machine Human

1
2

3
4

5

R
es

po
nd

en
t r

at
es

 o
f r

ef
ac

to
rin

g
pa

tc
he

s

sc

Machine Human

1
2

3
4

5

R
es

po
nd

en
t r

at
es

 o
f r

ef
ac

to
rin

g
pa

tc
he

s

sg

Fig. 1: User’s rates distribution.

refactorings and manual refactorings. The absence of statistically significant difference
between the two treatments could serve as evidence that automated refactoring can be
interleaved with manual changes without affecting the quality of a system.

In Table 9 we present the respondent’s median rates for the refactoring changes
presented in E1, and in Figure 1 the boxplots of user’s rates distribution.

Respondents input their rate for each refactoring change using a Likert-scale from 1
to 5. When considering all anti-patterns types, both sources of change (human, machine)
attained the same rate. With respect to anti-pattern’s type, the median rates for human
changes are higher (0.5 to 1 point) than the median rates of machine changes (Blob,
Lazy class and Spaghetti code types). Conversely, the machine refactoring changes to
remove Speculative Generality are rated higher than the changes generated by humans
to remove the same anti-pattern type. Automatic and manual refactoring changes

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 19

for removing Long-parameter list anti-patterns achieved the same rate. We apply the
Mann-Whitney test to determine if the results are statistically significant, and we find
that only refactoring changes that remove Blob instances achieve statistical significance,
with a p− value less than 0.01, and a medium Cliff’s δ ES. Hence, we reject H0rank

for all anti-patterns types except the Blob.�

�

�

�
We conclude that for the anti-patterns types studied, developers do not find
manual refactoring changes to be of better quality than automated refactoring
changes. The exception being the Blob type.

3.13 Recommendations to improve automated refactoring operations based on
participants feedback

In the next paragraphs we outline some recommendations obtained from the participants
of the preliminary study with respect to the quality of the automated refactorings.
This information is summarized from the comments left to refactorings performed by
RePOR in the online survey.

In general, developers highlight the importance of adopting naming and code
conventions in refactoring tools. For example, the use of uppercase for class names,
correct indentation, camel case, etc.

In some cases, the refactoring changed the visibility of some attributes to ’public’,
which was severely criticized by developers, despite the fact that the refactoring is inline
with refactoring guidelines. In other situations, developers feel that the refactoring was
incomplete, and suggested that human developers would go further. For example, save
the objects used frequently in a local variable, or merging Catch statements using logic
operators.

In the case of the Blob type, RePOR refactored the code using indirection, and
@deprecated tags, which was not well seen by developers.

On the other hand, some developers confessed that they would live with the problem
of anti-patterns like lazy class, due to the extra effort required to fix it. They also
admitted that having a tool to remove that burden from their shoulders is positive.

4 Experimental Design

We perform an experiment to assess the comprehension of source code by developers in
the presence of five types of object-oriented anti-patterns: Blob (BL), Lazy Class (LC),
Long Parameter List (LP), Spaghetti Code (SC) and Speculative Generality (SG). We
chose these anti-patterns because they are representative of poor design choices . In
fact, Palomba et al. [30] found in a case study with developers from both industry and
academia, that Blob class and Spaghetti Code are highly recognized and considered high
severity design problems; Speculative Generality was perceived as problem of medium
severity; Long-parameter list and Lazy class were considered low severity problem.
The rational to study Long-parameter list is that this anti-pattern type is deemed to
affect code readability, and Lazy class to bloat code design unnecessarily. Additionally,
previous works have proposed approaches to detect the anti-patterns studied in this
work [19, 16].

20 Empir Software Eng (2019)

Using a different pool of participants from the preliminary study, we present them
with code refactored by either developers or an automated tool, and ask them to
complete some comprehension tasks on the refactored code entities. The aim is to assess
the comprehensibility of code after refactoring. In each experiment, we selected two
instances of each anti-pattern type studied: one easy and one difficult. The level of
difficulty is decided based on several object-oriented metrics, based on each anti-pattern
type.

4.1 Research Questions

Our research questions stem from our goal of understanding the impact of automated
refactoring on developer’s comprehension. We state them as follows.
RQ1: Do automated refactorings affect code understandability?

4.2 Hypotheses

RQ1 is related to subjects performing code comprehension tasks on refactored code.
We study the performance of the subjects along three dimensions: time to execute
the comprehension task, effort measured using NASA task load index (TLX) [34], and
percentage of correct answers. We test H0performance: There is no difference between
the performance of developers performing comprehension tasks on code refactored by
developers compared to automatically refactored code.

4.3 Objects

The objects of this study are the same used in the Preliminary study Section 3.3

4.4 Subjects

For E2, we hired 30 more additional Java developers from aforementioned two mar-
ketplace websites. To select a candidate, we perform an informal interview with the
candidates, and we set a minimum of experience of one year developing Java software
for the industry. To control for possible confounding factors, we registered the number
of years of experience of each participant as professional developers, and asked them to
provide their Java’s level of confidence (using a Likert scale from 1 to 5).

4.5 Independent variable

The independent variable for E2 is the same used in E2. It is a binary variable stating
whether the refactoring was performed by an automatic tool or by a developer.

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 21

4.6 Dependent Variables

In E2, the dependent variables measure the subjects’ performance, in terms of effort,
time spent, and percentage of correct answers. We measure a subject’s performance
using the NASA Task Load Index (TLX). TLX evaluates the subjective workload of
subjects. It is a multidimensional measure that provides an overall workload index
based on a weighted average of ratings on six sub-scales: mental demands, physical
demands, temporal demands, own performance, effort and frustration. We combine
weights and ratings provided by the subjects into an overall weighted workload index
by multiplying ratings and weights; the sum of the weighted ratings divided by fifteen
(sum of the weights) represents the effort [34]. To measure the time that participants
spent on each task, we recorded the participants’ remote session on the virtual machine
where participants performed their assignment. The time reported only considers the
time spent on the comprehension task, from the moment they open the project in the
IDE, until they close it. We compute the percentage of correct answers for each question
by dividing the number of correct elements found by a participant by the total number
of correct elements (s)he has found. For example, if the question requires to find the
total number of code references for a given object, and there are ten references but the
subject finds only four, the percentage of correct answers is forty for that question.

4.7 Questions

For E2, we used comprehension questions to elicit comprehension tasks and collect
data on the subject’s performance. As in [1], we consider questions in three of the four
categories of questions regularly asked and answered by developers [36]: (1) finding a
focus point in some subset of the classes and interfaces of some source code, relevant
to a comprehension task; (2) focusing on a particular class believed to be related to
some task and on directly-related classes; (3) understanding a number of classes and
their relations in some subset of the source code; and, (4) understanding the relations
between different subsets of the source code. Each category contains several questions
of the same type.

We only selected questions in the first three categories, since the last category
concerns different subsets of the source code, while in our experiments, we focus
exclusively on one or two packages at most, that are affected by a particular anti-pattern.
For each category, we choose the two most relevant questions through discussions between
the first author and a Master’s student intern who collaborated on this work. The
decisions were validated by the second author. Selecting two questions for each category
of question, which provided us with two data points from each participant. The six
selected questions are the followings. The text in bold is a placeholder that we replace
with the appropriate behaviors, concepts, elements, methods and types depending on
the system on which the subjects performed their tasks.

– Category 1: Finding focus points:
– Question 1: Where is the code involved in the implementation of this behavior?
– Question 2: Which type represents this domain concept or this UI element
or action?

– Category 2: Expanding focus points:
– Question 1: Where is this method called or this type referenced?
– Question 2: What data can we access from this object?

22 Empir Software Eng (2019)

– Category 3: Understanding a subset of classes:
– Question 1: How are these types or objects related?
– Question 2: What is the behavior that these types provide together and how

is it distributed over these types

For example, with system 83 Xbus (cf., Table 2), we replace “this behavior” in question
1, category 1, by “manipulating and store the email received by class POP3XMLReceiver”.
For category 2, we acknowledge that the questions might be answered by developers us-
ing the IDE search functionality. However, developers still must identify and understand
the classes or methods that they consider relevant to the task. Additionally, discovering
classes and relationships that capture incoming connections prepare the developers
for the questions of the third category. Below we present the comprehension task for
system 83 Xbus.
Answer the following comprehension questions related to the system Xbus. We focus on
the package net.sf.xbus.technical.mail.

1. Where is the code involved in manipulating and storing the email received by class
POP3XMLReceiver?

2. Which type (class) defines a method for reading an email after registering its receiver
in the Transaction manager?

3. Where is the type POP3XMLReceiver referenced?
4. What data can we access from the object mEmailMessage?
5. How are Email and POP3XMLReceiver related?
6. What is the behavior that POP3XMLReceiver and Email provide together and how

is it distributed over these types?

4.8 Design

For E2, we use the same collection of refactoring examples from E1, 5 anti-pattern types,
and two instances for each type; each instance with two possibilities: being generated by
human or by machine. That totals 10 refactoring changes for each origin. We hired 30
freelancers, who completed two tasks each of them, leading to 60 comprehension tasks.

4.9 Procedure

For E2, the subjects knew that they would perform comprehension tasks, but did not
know the goal of the experiment nor whether the system was refactored by a developer
or by an automated approach. We informed them of the goal of the study after they
finished the experiment.

4.10 Analysis method

For RQ1 we use Mann-Whitney test to compare two sets of dependent variables and
assesses whether their difference is statistically significant. The two sets are the subject’s
data collected when they answer the comprehension questions on the systems refactored
by either machine or humans. For example, we compute the Mann-Whitney tests to
compare the set of times measured for each subject on the systems refactored by either
machine or humans. We also compute the Cliff’s δ (ES).

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 23

●

Machine Human

10
00

20
00

30
00

40
00

All timing_sec

●

●

Machine Human

20
40

60
80

All tlx_score

●●

●

Machine Human

20
40

60
80

10
0

All percentage_correct_answers

Fig. 2: Comprehension tasks’ performance results distribution.

5 Study Results

We now describe the collected data and present the results of our study, answering the
RQ formulated in Section 4.

5.1 RQ1: Do automated refactorings affect code understandability?

In this research question, we are interested to know the impact on understandability
of refactoring changes generated by human and machine. We now present the results
of E2. Table 10 summarizes the median of collected data, and Figure 2 presents the
overall performance of participants on the comprehension tasks, in terms of: time, effort,
and percentage of correct answers. In addition, we divide the refactoring changes in two
groups (see rows 4 to 9 of Table 10), i.e., those who deceived human judges in E1 (T.
passed), and those who failed the test (T. failed). In columns 5, and 6, we report the
p− value of the Mann-Whitney tests and the Cliff’s δ ES obtained for each studied
dimensions.

We observe that when considering all refactoring changes, the median time for
completing the comprehension task on code automatically refactored is slightly higher
than the median time spent on code manually refactored (approximately 5 minutes
more). However, the difference is not statistically significant and the effect size is small.

In the case of effort, the effort perceived by developers is almost the same, with a
negligible effect size.

In the case of percentage of correct answers, the median values are the same for
both human and machine.

We repeated the analysis along the same three dimensions while dividing the
refactoring changes in two groups (passed and failed the Turing tests). With respect
to time, the difference of the medians for anti-patterns that passed the Turing test
(i.e., BL, SC, LC) is higher (medium ES) for automatically generated changes, though
the difference is not statistically significant. In the case of effort, the effect size is
negligible and not statistically significant, same for percentage of correct answers.

For anti-patterns that failed the Turing test, the results are not statistically signifi-
cant either.

Since we could not find statistically significant differences in the performance of
developers when performing code comprehension tasks on systems that were manually

24 Empir Software Eng (2019)

Table 10: RQ3 Comprehension task results E2: median values for the three dimensions studied
Grouping Dimension Human Machine p− value ES
ALL Time (seconds) 1 328.00 1 657.50 0.07 small
ALL Effort (TLX index) 50.90 49.71 0.82 negligible
ALL % of correct answers 67.00 67.00 0.76 negligible
T. passed Time (seconds) 1 100.00 1 606.00 0.09 medium
T. passed Effort (TLX index) 51.37 49.71 0.72 negligible
T. passed % of correct answers 67.00 75.00 0.83 negligible
T. failed Times (seconds) 1 176.00 1 606.00 0.16 small
T. failed Effort (TLX index) 51.37 48.00 0.36 small
T. failed % of correct answers 83.00 67.00 0.01 large

and automatically refactored, we reject H0performance. Hence, we conclude that for
the anti-patterns studied in this work there is no difference between the performance of
developers performing comprehension tasks on code refactored by developers compared
to automatically refactored code. This is good news for toolsmiths working on automatic
tools for removing anti-patterns. For developers, this result will likely increase their
trust in automatic refactoring tools, and for researchers it extends the existing body of
knowledge on the benefits of automatic refactoring.�

�

	
We conclude that for the set of refactoring strategies studied, developers can
safely use automated tools since the impact of the automated changes on the
comprehension of the code is not significantly different from the impact of
changes performed by human developers.

6 Discussion

In this section, we provide further information about the obtained results and discuss
their implications. The results in E1 show that in general, automatically generated
refactorings and refactoring changes made by humans were equally difficult to identify.
In 10% of cases, developers couldn’t even make a decision and opted for the “I do not
know” option.

6.1 Refactoring change differences by anti-pattern type

When analysing results based on anti-patterns types, the picture is a bit different.

6.1.1 Long-parameter-list anti-patterns automatically refactored were easier to
identify than their manual counterpart

For the two instances of Long-Parameter list studied, the refactoring strategy selected
by both human and machine was to introduce a parameter-object. In fact, the solution
provided for the easy instance is conceptually the same for both the automatic tool and
the developer (the only difference is the name selected for the new class). However, since
we replaced the name in both solutions by an artificial name (e.g., Clazz09465) to avoid
introducing bias in the experiment (as explained in Section 3.8), the two refactoring

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 25

changes are semantically equivalent. In the hard instance, there was a small difference
between the two solutions; the freelancer declared the new class in the same file, while
our automated approach created a new file; besides that minor change, we can consider
both solutions to be semantically equivalent too.

As we mentioned in Section 5, we suggest that the quality of the refactoring changes
applied to correct Long-parameter list did not influence the choice of the participants in
the Turing test, but their expectations about refactoring. Some respondents mentioned
that there is no reason to extract a new parameter object, given that the parameter
object only stores data. Hence, we suggest that the developers surveyed did not give
importance to the understandability aspect of having a long-list of parameters over
having an extra class that clusters the common parameters together, and that is why
they attributed the change to a machine. Note that the number of parameters extracted
for the Long-parameter list instance identified by the authors as hard is considerably
long (8 parameters) compared to the rest of the classes (4 parameters) in the system
where the instances of Long-parameter list anti-pattern resides.

6.1.2 Refactoring changes of speculative generality and lazy class are semantically
equivalent

With respect to Speculative Generality and Lazy class, the refactoring strategies
employed by both the automated tool and the developers are the same for the first
anti-pattern’s type (i.e., Collapse hierarchy), while for the second type (i.e., Lazy class)
the refactoring applied (i.e., inline class) exhibits a small variation on the selected
target class. The Lazy classes instances are composed of a unique static method, so
they could be placed in any class that makes use of this method, so we consider the
refactoring solutions for these two anti-pattern types to be equivalent, despite their
origin. Given that in the solutions for both anti-pattern’s types no classes or methods
are added to the system, these refactorings can be completely automated, as they do
not require to provide names to entities, according to some code conventions set for the
systems.

6.1.3 The hard instance of Spaghetti code that was manually refactored was easier to
identify than the automatically refactored one

The machine and human refactoring changes applied to remove spaghetti code, for
the easy and hard instances, used the same strategy: replace long method with method
object. This strategy consists of extracting a long method inside the spaghetti code class
into a new class. For the easy instance, both solutions differ just in the name selected
for the new class, and since we normalized the names, we consider them semantically
equivalent. On the other hand, the refactorings applied for the hard instance of spaghetti
code class exhibit some design differences that may have help some survey respondents
to identify their origin.

The long method extracted from the spaghetti code class makes use of a private
attribute and a static method inside the spaghetti code class, and it does not require
access to other external attributes or methods. In the automated refactoring change, two
private attributes where moved to the new extracted class, while in the manual solution
the freelancer added public getter to access the required private attribute outside the
spaghetti code class. Hence, the use of the private attributes, in the automatically
refactored code, are delegated to the extracted class inside the spaghetti code class. Since

26 Empir Software Eng (2019)

both machine and human set the access modifier of the static method to public, there
was no need to pass a reference to the spaghetti code class in the automated refactoring
solution. But in the manual solution the extracted long method requires a reference to
the spaghetti code class to use the required private attribute. These differences were
noticed by one of the survey respondent, who provided the following explanation to
justify why he thought that the refactoring was automatically generated:“I don’t think
that a developer would extract the long method from the spaghetti code class to the new
extracted class, and add as a parameter to the long method a reference to the spaghetti
code class, because that reference is not used”. With respect to the manual solution, one
respondent commented that the addition of a getter, to the private attribute, and the
way the extracted class was instantiated to call the long method does not seem to be
automatically generated. To provide a complete picture of what we discussed, we show
in Listing 2 and Listing 3, the actual changes performed to instantiate the new class,
and execute the extracted long method for both automatic and manual solutions. We
use the acronyms ADD, DEL, and CHG to indicate added, deleted, and changed line.

Listing 2: Extract from refactoring
change for hard instance of spaghetti
code by machine.

public class WorkflowManager {
DEL private String logconfig =

System.getenv ("HS_HOME") +
File.separator + "config" +
File.separator +
"log4j.properties";

ADD private Clazz008353
Clazz008353 = new Clazz008353
(System.getenv("HS_HOME") +
File.separator + "config" +
File.separator +
"log4j.properties");

public WorkflowManager() {
DEL PropertyConfigurator.configure

(logconfig) ;
ADD PropertyConfigurator.configure

(Clazz008353.logconfig);
}
private void

process_submission(String[]
args) {

CHG Clazz008353.process_submission
(this, args);

}
}

Listing 3: Extract from refactoring
change for hard instance of spaghetti
code by human.

public class WorkflowManager {
private void

process_submission(String[]
args) {

CHG new Clazz008353
(this).submit(args);
}

}

The differences between the automatic solution for the hard instance of Spaghetti
code with respect to the manual one could be easily matched by adding a validation to
prevent passing a reference of the refactored spaghetti class as parameter to the long
method call, when none of its attributes and methods are used. Toolsmiths should pay
attention to corner cases like this, which can only be revealed by thoroughly testing
their tools with several scenarios and systems.

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 27

6.2 Perceived quality of refactoring changes

Concerning quality perceived by developers, we observed that it is only for the Blob
anti-pattern type (which passed our Turing test) that the difference of rates achieved
between manual and automatic refactoring changes is statistically significant, favoring
manual refactoring.

We identify the following differences in the refactoring strategies used by human
and the automatic approach that are worth to discuss.

First, the automated approach selected move method as a mean to decompose Blob
classes and to redistribute functionality to other classes in the system, while the human
approach relied on extracting new classes to reduce the size of Blob classes.

With respect to the refactoring strategy applied for the easy instance of Blob, the
automated solution consists of delegating 12 methods to a class where an association
relationship exists. One respondent complained that the coupling between these two
classes increased dramatically, which was not the case. In contrast, the manual solution
for the hard Blob’s instance took a different path. It consists of extracting two attributes
and their corresponding getters and setters to a new class. This solution, though
semantically correct, does not reduce the size of the Blob class significantly, but
introduce coupling to a new data class.

For the hard instance, one respondent commented about the manual solution as
follows: “it seems good and needs to be corrected with minor changes”. We studied the
manual solution and found that it performs a clear separation of concerns by extracting
methods and attributes to new classes according to their names. That would be hard
for a machine to achieve, unless they gather some knowledge about the code lexicon.
The refactoring strategy followed by the automated approach consists of delegating
three methods to a related class that is member attribute of the Blob class. Although,
the strategy taken by the tool prevents adding extra coupling to a new extracted class
while reducing Blob’s class size, respondents of E1, did not like it. They highlighted that
when moving methods, the automated approach changed the visibility of the required
attributes to public, which implied several changes with no clear benefit. Respondents
rated the automatically-generated refactorings for Blob type with average scores of 2.6
and 2.7, for the easy and hard instances respectively. While the human ones obtained 4.4
and 2.5 respectively. It is interesting to note that although the automatically-generated
refactorings of Blob did not achieved the best rate, the perceived quality showed little
variation between the two instances despite their different levels of complexity of each
system. On the other hand, the rate achieved by the two manual refactoring changes
for Blob type varied considerably based on the human effort of each freelancer, and
the complexity of the code that enable (or not) to abstract functionality to new classes.
From a practical point of view, developers will not only reduce maintenance costs by
using automated approaches, but can ensure a standardized quality gain after the
refactoring process.

6.3 Improving automated refactoring of Blob classes

To improve the performance of automated refactoring on Blob anti-patterns, it would
be necessary to control for code semantics targeting two aspects: (1) the generation of
refactoring candidates should be guided by code lexicon; (2) an automated refactoring
approach should incorporate a mechanism for naming new code entities based on code

28 Empir Software Eng (2019)

Table 11: p−values of the impact of the mitigating variables on the performance of participants
for E2

Variable origin effort: p− values time: p− values % of correct an-
swers: p− values

Expertise human 0.3658 0.9516 0.857
machine 0.2172 0.6145 0.9109

Java confidence human 0.4522 0.01657 0.346
machine 0.8893 0.8166 0.1339

lexicon. The first aspect has been already discussed by Ouni et al. [29], while the second
point remains unexplored. We suggest that by addressing these two aspects we could
improve the performance of automated refactoring of Blob classes, making it as good
as the human refactorings, or even better.

6.4 Refactoring changes impact on code comprehension

Concerning the impact on code comprehension, we could not make an analysis by anti-
pattern type as we only have 6 points for each anti-pattern type. However, E2 reveals
no significant difference between subject’s efforts, times, and percentages of correct
answers on systems refactored by human and machine. We investigated whether the two
mitigating variables : expertise and Java’s level of confidence (not to be confused with
respondent’s level of confidence per question in E1) declared by participants impacted
our results. We set 4 levels for the years of experience and 5 levels for the degree of
Java’s confidence, using a Likert scale, from no confidence to highly confident.
Table 11 presents some descriptive statistics of the data collected for these two mitigating
variables. Since for each mitigating variable we have multiple levels (more than two)
corresponding to multiple categories, we used the Kruskal-Wallis Test, which is a non-
parametric test for comparing multiple medians, to assess the impact of the mitigating
variables on the three performance dimensions (time, effort, and % of correct answers).
We observed that the mitigating variables do not impact our results, as shown by the
high p − values in Table 11; i.e., participants mostly had the same performance on
refactorings from the same origin, no matter their level of expertise/Java confidence,
which reinforces our assessment that refactoring changes are what did matter.

7 Threats to Validity

There are threats that limit the validity of this study. We discuss these threats and how
we alleviate or accept them following common guidelines provided in [40].

7.1 Construct Validity

Construct validity threats concern the relation between theory and observations. This
work relies on good developers practices (i.e., extreme programming [3]) where develop-
ers are advised to perform refactoring to remove anti-patterns, in order to maintain the
design quality at an acceptable levels, and hence ease software evolution. However, we
cannot claim that removing anti-patterns is the prime reason for developers to perform

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 29

refactoring, specifically the ones that we studied. However, relying on the notion of
refactoring anti-patterns allowed us to objectively evaluate two methods (manual and
automated refactoring), and to control from a large space of possibilities. That is
why we had to constraint our study of the refactoring practice to existing well-known
refactorings [8, 5].

In E2, we use time and percentage of correct answers to measure the subjects’
performance. The measured time was extracted from the video recording of the com-
prehension tasks sessions, while the percentage of correct answers was evaluated by one
author of the paper and one Master’s student. We believe that these measurements
are objective, even if they can be affected by external factors, such as fatigue. We also
use NASA TLX score to measure the subjects’ effort. The TLX is by its own nature
subjective and, thus, it is possible that our subjects declared effort values that do not
perfectly reflect their effort.

The degree of severity of the anti-patterns is also a threat to construct validity. The
anti-patterns instances selected in each system were validated through a voting process
for decisions. The first author and a Master’s student voted for the anti-patterns, and
the second author reviewed the decisions. We based our selections on the definitions and
examples provided by Brown and Fowler [5, 8]. To validate the solutions proposed by
the automatic tool and the developers (i.e., the freelancers), we check that the solution
preserves code’s behavior based on the unit tests included in the SF110 corpus. We also
control for the level of complexity of the refactoring changes proposed by freelancers
and our tool by computing normalized change entropy metric, which showed that the
changes judged by human evaluators are fair for both treatments cf.,2. Yet, it is possible
that some of the refactoring changes proposed would have a different effect if applied
to other systems in different contexts.

Construct validity threats could be the result of a mistaken relation between
(automated) refactoring and program comprehension. We believe that this threat is
mitigated by the fact that this relation seems rational. The results of our analysis
suggest that certain anti-patterns’ type can be automatically refactored with the same
level of quality as the refactorings performed by human developers.

7.2 Internal Validity

We identify 4 threats to the internal validity of our study: learning, selection, instru-
mentation, and diffusion.

7.2.1 Learning

Learning threats do not affect our study for the two experiments because we used a
between-subject design. A between-subject design uses different groups of subjects, to
whom different treatments are assigned. Additionally, we took each anti-pattern instance
from different systems. For E1, we balanced the groups (alternating difficulty level, and
origin); then we randomized the appearance order of the refactoring changes for each
group. For E2, the freelancers had to perform two comprehension tasks. To mitigate
the learning effect, the systems were presented in the same order for both treatments
(manual and automatic refactoring). For example, consider a comprehension task for
systems 47, and 52. We anticipated that developers will spent more time for the first
system (i.e., 47), while getting familiar with the instructions, developer environment,

30 Empir Software Eng (2019)

etc., than with the second system (52). Hence, the extra time spent as a consequence of
the learning process is considered in the same system for both treatments.

7.2.2 Participant’s selection

Participant’s selection threats could impact our study due to the natural difference
among the participants’ skills. In E1, we tried to mitigate this threat by inviting
developers through technical Java developers mailing list, (e.g., openJDK project),
developers groups on social networks (e.g., LinkedIn, Reddit, and Facebook). In E2, we
studied the possible impact of their expertise in Java through two mitigating variables
and found no significant impact on the obtained results.

7.2.3 Instrumentation

Instrumentation threats were minimized by using objectives measures like time and
percentage of correct answers. We observed some subjectivity in measuring refactoring
changes quality, developer’s confidence, and developer’s experience in E1; and developers’
effort measured using the TLX score. For example, 5 years of experience of one developer,
could be the equivalent of 3 years for another one. However, this subjectivity is inevitable
in self-evaluations.

Another instrumentation threat to our study is the anonymization of new code
lexicon. This only affects Blob, Long-parameter list and Introduce-parameter object
anti-pattern types. Automated refactorings that introduce new elements are likely to
be distinguished from their manual equivalents. But naming code lexicon is just one
part of the semantic context. By anonymizing the names of newly created entities, we
wanted to steer the focus of the respondents toward the structure of the code changes.
Recent works [12] in automated code comment generation have shown promising results
on generating human-like comments using deep learning. Hence, we believe that there is
a reasonable possibility to overcome the current code lexicon limitations of automated
refactoring tools in the future, and this study can serve as base for performing further
studies when the technology is mature enough.

7.2.4 Diffusion

Diffusion threats do not impact our study because (1) we recruit participants through
web platforms and mailing lists, and they do not have physical interactions, and (2) we
asked them to not disclose any information about the content of the surveys and the
systems.

7.3 Conclusion Validity

Conclusion validity threats concern the relation between the treatment and the out-
come. We paid attention not to violate the assumptions of the statistical tests that
were performed. Indeed, we used non-parametric tests that do not require to make
assumptions about the distribution of the data set.

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 31

7.4 Reliability Validity

Reliability validity threats concern the possibility of replicating this study. We provide
all the necessary details to replicate our study in our lab’s Web page [21], including a
sample of the questionnaire and the comprehension tasks, and raw data to compute the
statistics. The systems analyzed from SF110 are open-source and can be downloaded
from the author’s web site. Our automated refactoring tool is also available on-line at
https://github.com/moar82/RefGen.

7.5 External Validity

We performed our study on 10 different real-world systems belonging to different
domains and with different sizes (see Table 2). Our experimental design, providing a few
classes of each system to each participant, is reasonable because, in real maintenance
projects, developers perform their tasks on small parts of whole systems and probably
limit themselves as much as possible to avoid getting lost in a large code base. In E1

we summarize the refactoring changes using the diff notation, and provide it along
with the original source code; allowing developers to spot changes fast, in a readable
and standard way, and in case of doubt, to clone the repository to explore the code
and–or apply the changes (by applying the diff file as a patch). To mitigate the impact
that a lack of familiarity to diff notations could have on the responses of our study, we
explained the notation to participants prior to participating in the study and provided
them multiple examples in a guidelines document. We cannot claim that our results
can be generalized to other refactoring tools, and to other subjects. To generalize our
results, we should implement other approaches different from RePOR. However, this
was not the main objective of this work. Rather, we want to empirically evaluate if
automatically refactored code can be interleaved with human code on development and
maintenance activities of real world systems.

Our future work includes replicating this study in other contexts, with other subjects,
tools, questions, anti-patterns, and software systems.

8 Conclusions

Refactoring tool support is conjectured in the literature to be underused due to lack of
awareness, and developers reluctance to incorporate machine-generated-code into their
code base. To debunk this myth, and foster awareness of automated refactoring, we
performed two experiments to evaluate the perceived quality of automated refactorings
and their impact on code comprehension. Our results show that developers could not
distinguished between automatically generated refactorings and refactorings created by
humans, for 3 out of the 5 anti-pattern types studied. Moreover, in general, developers
did not prefer refactorings generated by humans over automatically generated refac-
torings, the only exception being for removing Blob classes. We found no significant
difference between the performance of developers performing comprehension tasks on
code refactored by developers or by an automatic tool, to remove Blob, Lazy class, and
Speculative generality. Hence, we conclude that automated refactoring can be as effective
as manual refactoring. However, for complex anti-patterns’ types like Blob, we suggest
that developer’s expertise be included in the refactoring process as much as possible.

32 Empir Software Eng (2019)

In the future work, we plan to enhance automated refactoring with code semantics
by leveraging the code lexicon of systems when determining the best candidates to
receive functionalities extracted from Blob classes, and for automatically naming the
new classes, and–or methods introduced during a refactoring process. By doing this, we
could generate more natural refactoring solutions, and close the gap between human
and machine generated refactorings.

References

1. Abbes, M., Khomh, F., Gueheneuc, Y.G., Antoniol, G.: An empirical study of the
impact of two antipatterns, blob and spaghetti code, on program comprehension.
In: Software Maintenance and Reengineering (CSMR), 2011 15th European Conf.
on, pp. 181–190 (2011)

2. Arima, R., Higo, Y., Kusomoto, S.: Toward refactoring evaluation with code
naturalness. In: Proceedings of the 26th International Conference on Program
Comprehension, ICPC ’18. IEEE Press (2018). DOI https://doi.org/10.1145/
3196321.3196362

3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change (2Nd
Edition). Addison-Wesley Professional (2004)

4. Bois, B.D., Demeyer, S., Verelst, J., Mens, T., Temmerman, M.: Does god class
decomposition affect comprehensibility? In: IASTED Conf. on Software Engineering
(2006)

5. Brown, W.J., Malveau, R.C., Brown, W.H., McCormick III, H.W., Mowbray, T.J.:
Anti Patterns: Refactoring Software, Architectures, and Projects in Crisis, first edn.
John Wiley and Sons (1998)

6. Cliff, N.: Ordinal methods for behavioral data analysis. Psychology Press (2014)
7. Deligiannis, I., Stamelos, I., Angelis, L., Roumeliotis, M., Shepperd, M.: A controlled

experiment investigation of an object-oriented design heuristic for maintainability.
Journal of Systems and Software 72(2), 129 – 143 (2004). DOI https://doi.org/10.
1016/S0164-1212(03)00240-1

8. Fowler, M.: Refactoring: improving the design of existing code. Pearson Education
India (1999)

9. Fraser, G., Arcuri, A.: A large scale evaluation of automated unit test generation
using evosuite. ACM Transactions on Software Engineering and Methodology
(TOSEM) 24(2), 8 (2014)

10. Griswold, W.G., Notkin, D.: Automated assistance for program restructuring. ACM
Transactions on Software Engineering and Methodology (TOSEM) 2(3), 228–269
(1993)

11. Hassan, A.E.: Predicting faults using the complexity of code changes. In: 2009
IEEE 31st International Conference on Software Engineering, pp. 78–88 (2009).
DOI 10.1109/ICSE.2009.5070510

12. Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation. In:
Proceedings of the 26th Conference on Program Comprehension, pp. 200–210. ACM
(2018)

13. Kataoka, Y., Imai, T., Andou, H., Fukaya, T.: A quantitative evaluation of maintain-
ability enhancement by refactoring. In: Software Maintenance, 2002. Proceedings.
International Conference on, pp. 576–585. IEEE (2002)

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 33

14. Kim, M., Zimmermann, T., Nagappan, N.: An empirical study of refactoringchal-
lenges and benefits at microsoft. IEEE Transactions on Software Engineering 40(7),
633–649 (2014). DOI 10.1109/TSE.2014.2318734

15. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In: Software
Engineering (ICSE), 2012 34th International Conference on, pp. 3–13. IEEE (2012)

16. Marinescu, R.: Detection strategies: Metrics-based rules for detecting design flaws.
In: IEEE Int’l Conference on Software Maintenance, ICSM, pp. 350–359. IEEE
Computer Society (2004)

17. Mens, T., Tourwé, T.: A survey of software refactoring. Software Engineering, IEEE
Transactions on 30(2), 126–139 (2004)

18. Moghadam, I.H., Cinneide, M.O.: Automated refactoring using design differenc-
ing. In: Software Maintenance and Reengineering (CSMR), 16th European Con-
ference on, Proceedings of the European Conference on Software Maintenance
and Reengineering, CSMR, pp. 43 – 52. IEEE Computer Society (2012). DOI
10.1109/CSMR.2012.15. URL http://dx.doi.org/10.1109/CSMR.2012.15

19. Moha, N., Gueheneuc, Y.G., Duchien, L., Le Meur, A.: Decor: A method for the
specification and detection of code and design smells. Software Engineering, IEEE
Transactions on 36(1), 20–36 (2010)

20. Morales, R., Chicano, F., Khomh, F., Antoniol, G.: Efficient refactoring scheduling
based on partial order reduction. Journal of Systems and Software (2018). DOI
https://doi.org/10.1016/j.jss.2018.07.076

21. Morales, R., Khomh, F., Antoniol, G.: Repor: Mimiking humans on refactoring
tasks. replication website. https://moar82.github.io/emserefturing/ (2019)

22. Morales, R., Sabane, A., Musavi, P., Khomh, F., Chicano, F., Antoniol, G.: Finding
the best compromise between design quality and testing effort during refactoring.
In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, pp. 24–35 (2016)

23. Morales, R., Soh, Z., Khomh, F., Antoniol, G., Chicano, F.: On the use of developers’
context for automatic refactoring of software anti-patterns. Journal of Systems and
Software 128, 236 – 251 (2017)

24. Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., Succi, G.: A case study on the
impact of refactoring on quality and productivity in an agile team. In: Balancing
Agility and Formalism in Software Engineering, pp. 252–266. Springer (2008)

25. Murphy-Hill E.; Black, A.: Refactoring tools: Fitness for purpose. Software, IEEE
25(5), 38–44 (2008)

26. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.
Software Engineering, IEEE Transactions on 38(1), 5–18 (2012). DOI 10.1109/
TSE.2011.41

27. Negara, S., Chen, N., Vakilian, M., Johnson, R.E., Dig, D.: A comparative study
of manual and automated refactorings. In: G. Castagna (ed.) ECOOP 2013 –
Object-Oriented Programming, pp. 552–576. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

28. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University of
Illinois at Urbana-Champaign (1992)

29. Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., Hamdi, M.S.: Improving multi-
objective code-smells correction using development history. Journal of Systems and
Software 105(0), 18 – 39 (2015)

34 Empir Software Eng (2019)

30. Palomba, F., Bavota, G., Penta, M.D., Oliveto, R., Lucia, A.D.: Do they really
smell bad? a study on developers’ perception of bad code smells. In: Software
Maintenance and Evolution (ICSME), 2014 IEEE Int’l Conference on, pp. 101–110.
IEEE (2014)

31. Parnas, D.L.: Software aging. In: ICSE ’94: Proc. of the 16th Int’l conference on
Software engineering, pp. 279–287. IEEE Computer Society Press (1994)

32. Romano, J., Kromrey, J.D., Coraggio, J., Skowronek, J., Devine, L.: Exploring
methods for evaluating group differences on the nsse and other surveys: Are the
t-test and cohen’sd indices the most appropriate choices. In: annual meeting of the
Southern Association for Institutional Research (2006)

33. Seng, O., Stammel, J., Burkhart, D.: Search-based determination of refactorings for
improving the class structure of object-oriented systems. GECCO 2006: Genetic
and Evolutionary Computation Conference, Vol 1 and 2 pp. 1909–1916 (2006)

34. Sharek, D.: A useable, online nasa-tlx tool. In: Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, vol. 55, pp. 1375–1379. SAGE Publications
Sage CA: Los Angeles, CA (2011)

35. Sheskin, D.J.: Handbook of parametric and nonparametric statistical procedures.
crc Press (2003)

36. Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during
a programming change task. IEEE Transactions on Software Engineering 34(4),
434–451 (2008)

37. Szőke, G., Nagy, C., Hegedűs, P., Ferenc, R., Gyimőthy, T.: Do automatic refactor-
ings improve maintainability? an industrial case study. In: 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 429–438 (2015).
DOI 10.1109/ICSM.2015.7332494

38. Turing, A.M.: Computing machinery and intelligence. In: Parsing the Turing Test,
pp. 23–65. Springer (2009)

39. Vakilian, M., Chen, N., Negara, S., Rajkumar, B.A., Bailey, B.P., Johnson, R.E.:
Use, disuse, and misuse of automated refactorings. In: Software Engineering (ICSE),
2012 34th International Conference on, pp. 233–243. IEEE (2012)

40. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in software engineering. Springer Science & Business Media (2012)

41. Xing, Z., Stroulia, E.: Refactoring practice: How it is and how it should be supported-
an eclipse case study. In: Software Maintenance, 2006. ICSM’06. 22nd IEEE
International Conference on, pp. 458–468. IEEE (2006)

RePOR: Mimicking humans on refactoring tasks. Are we there yet? 35

Rodrigo Morales is a full-time lecturer at Concordia Uni-
versity in Montréal, Canada. He obtained his BS. degree in
computer science in 2005 from Polytechnic of Mexico. In 2008,
he obtained his MS. in computer technology from the same Uni-
versity, where he also worked as a Professor in the computer
Science department for five years. He has also worked in the bank
industry as a software developer for more than three years. He
obtained his Ph.D. degree in computer engineering from Poly-
technic of Montréal where he earned the best thesis award of
2017. He has published in top software engineering Journals and

like IEEE TSE, ESEM, and JSS and top conferences including ICSE, and SANER. He
is one of the main organizers of the International Workshop on Software Engineering
Research & Practices for the Internet of Things (SERP4IoT), co-located with ICSE,
and actively participate as committee member of ICSME and ICPC conferences. His re-
search interests include software design quality, energy efficiency, automated-refactoring,
anti-patterns, mobile apps and Internet of Things. Web page: https://moar82.github.io/

Foutse Khomh is a Professor of Software Engineering at
Polytechnique Montréal and FRQ-IVADO Research Chair on
Software Quality Assurance for Machine Learning Applications.
He received a Ph.D in Software Engineering from the Univer-
sity of Montreal in 2010, with the Award of Excellence. He also
received a CS-Can/Info-Can Outstanding Young Computer Sci-
ence Researcher Prize for 2019. His research interests include
software maintenance and evolution, machine learning systems
engineering, cloud engineering, empirical software engineering,
and software analytic. His work has received three ten-year Most
Influential Paper (MIP) Awards, and five Best/Distinguished

paper Awards. He has served on the program committees of several international confer-
ences including FSE, ICSM(E), SANER, MSR, ICPC, SCAM, ESEM and has reviewed
for top international journals such as JSS, EMSE, TSC, TSE and TOSEM. He is
program chair for Satellite Events at SANER 2015, program co-chair of SCAM 2015,
ICSME 2018, PROMISE 2019, and ICPC 2019, general chair of ICPC 2018, SCAM 2020,
and SANER 2020. He is on the steering committee of SANER, MSR, PROMISE, ICPC
(chair), and ICSME(vice-chair). He initiated and co-organized the Software Engineering
for Machine Learning Applications (SEMLA) symposium (https://semla.polymtl.ca/)
and the RELENG (Release Engineering) workshop series (http://releng.polymtl.ca).
He is an Associate Editor for IEEE Software. Web page: http://khomh.net/

Giuliano Antoniol (Giulio) worked in companies, research
institutions and universities such as the Fondazione Bruno Kessler
(FBK, forerly IRST), Trento (Italy) and the University of Sannio,
Italy. In 2005 he joined the Polytechnique Montreal and was
awarded the Canada Research Chair Tier I in Software Change
and Evolution. He is a member of the editorial boards of the
Journal of Software Maintenance and Evolution: Research and
Practice and the Software Quality Journal. He served also as
member of the editorial board of the Empirical software engineer-
ing journal, the information and software technology journal, the

journal of software testing verification & Reliability, and IEEE software. He served as
program chair, industrial chair, tutorial, and general chair of international conferences

36 Empir Software Eng (2019)

and workshops. Dr Giuliano Antoniol served as Deputy Chair of the Steering Committee
for the IEEE International Conference on Software Maintenance, International Sympo-
sium on Search-Based Software Engineering; he is presently member of the steering of
the International Workshop on Search-Based Software Testing. Dr Giuliano Antoniol
published more than 100 papers in journals and international conferences. He recently
contributed to start and run the Software Engineering for Machine Learning Applications
(SEMLA) and the International Workshop on Machine Learning Systems Engineering
(iMLSE) initiatives. He is currently Full Professor at the Polytechnique Montreal, where
he works in the area of software evolution, empirical software engineering, software
traceability, search based software engineering and software testing.

